Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T00:21:09.722Z Has data issue: false hasContentIssue false

Electrical properties of sol-gel derived films containing composites of glass-ceramics and nanocrystalline silver

Published online by Cambridge University Press:  31 January 2011

T. K. Kundu
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
D. Chakravorty
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
Get access

Abstract

Sol-gel-derived films containing BaTiO3 crystallites have been grown on suitable substrates using a precursor composition in the system Li2O-BaO-TiO2. Silver particles of diameters in the range 4.9 to 16.2 nm have been synthesized within these films by ion exchange and reduction technique. Electrical resistivities are found to vary from ∼102 to 105 ohm-cm, depending on the silver particle diameter. A low activation energy, approximately a few millielectron volts, is found to characterize the electrical properties of most of the samples. A quantum size effect is invoked to explain the results.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W. A. III, Kaldor, A., Louie, S. G., Moscovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704 (1989).CrossRefGoogle Scholar
2.Abeles, B., Sheng, P., Coutts, M. D., and Arie, Y., Adv. Phys. 24, 407 (1975).CrossRefGoogle Scholar
3.Abeles, B., in Applied Solid State Science, edited by Wolfe, R. (Academic Press, New York, 1976), p. 1.Google Scholar
4.Abeles, B., Pinch, H. L., and Gittleman, J. I., Phys. Rev. Lett. 35, 247 (1975).Google Scholar
5.Priestley, E. B., Abeles, B., and Cohen, R. W., Phys. Rev. B 12, 2121 (1975).CrossRefGoogle Scholar
6.Roy, B. and Chakravorty, D., J. Phys.: Condens. Matter 2, 9323 (1990).Google Scholar
7.Roy, B. and Chakravorty, D., J. Appl. Phys. 74, 4190 (1993).CrossRefGoogle Scholar
8.Chatterjee, A. and Chakravorty, D., J. Mater. Sci. 27, 4115 (1992).Google Scholar
9.Roy, B. and Chakravorty, D., J. Mater. Res. 8, 1206 (1993).CrossRefGoogle Scholar
10.Tick, P. A. and Fehlner, F. P., J. Appl. Phys. 43, 362 (1972).Google Scholar
11.Kubo, R., J. Phys. Soc. Jpn. 17, 975 (1962).CrossRefGoogle Scholar
12.Wood, D. M. and Ashcroft, N. W., Phys. Rev. B 25, 6255 (1982).CrossRefGoogle Scholar
13.Kittel, C., Introduction to Solid State Physics (John Wiley and Sons, New York, 1956), p. 250.Google Scholar