Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T16:53:09.539Z Has data issue: false hasContentIssue false

Epitaxial crystallization of polyphenylene sulfide on sodium chloride

Published online by Cambridge University Press:  31 January 2011

X. J. Qian
Affiliation:
Department of Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106
S. E. Rickert
Affiliation:
Department of Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106
J. B. Lando
Affiliation:
Department of Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106
Get access

Abstract

Epitaxial crystallization of polyphenylene sulfide (PPS) from 1-chloronaphthalene solution on NaCl (001) surface has been studied using electron microscopy and electron diffraction techniques. Three different epitaxial morphologies were observed: (1) conventional rodlike structures (fold plane epitaxy); (2) platelet structures (fold surface epitaxy); and (3) roselike structures whose growth mechanism and molecular packing are not completely understood at present. Of primary importance is the fact that a possible new crystal structure β-phase) of PPS was formed in the fold surface epitaxy through a true two-dimensional lattice matching by lateral lattice dimensional adjustment of PPS. Lattice match criterion again shows its merit in explaining the formation of fold surface epitaxy and the new crystal structure of PPS. Solution concentration, crystallization temperature, and time have significant influence on crystal growths, orientations, molecular packing, and morphological arrangements.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mauritz, K. A., Baer, E., and Hopfinger, A. J., J. Polym. Sci. Macromol. Rev. 13, 1 (1978).CrossRefGoogle Scholar
2Seifert, H., in Structure and Properties of Solid Surface (Univ. Chicago Press, Chicago, IL, 1953), p. 318.Google Scholar
3Matthews, J. W., in Epitaxial Growth (Academic Press, New York, 1975), pp. 2436.Google Scholar
4Willems, J. and Fischer, E. W., Disc. Faraday Soc. 25, 204 (1957).Google Scholar
5Willems, J. and Willems, I., Experientia 13, 465 (1957).CrossRefGoogle Scholar
6Yeh, G., J. Polym. Sci. 4, 611 (1966).Google Scholar
7Rickert, S.E. and Baer, E., J. Appl. Phys. 47, 4304 (1976).CrossRefGoogle Scholar
8Koutsky, J. A., Walton, A. G., and Baer, E., J. Polym. Sci. Polym. Lett. Ed. 5, 185 (1967).CrossRefGoogle Scholar
9Koutsky, J. A., Walton, A. G., and Baer, E., J. Polym. Sci. Polym. Lett. Ed. 5, 177 (1967).CrossRefGoogle Scholar
10Darling, D.F. and Field, B.O., Surf. Sci. 34, 420 (1973).CrossRefGoogle Scholar
11Koutsky, J. A., Walton, A.J., and Baer, E., J. Polym. Sci. A-2 4, 611 (1966).CrossRefGoogle Scholar
12Carr, S. H., Walton, A. G., and Baer, E., Biopolymers 6, 469 (1968).CrossRefGoogle Scholar
13Cleary, J.W., Polym. Sci. Technol. (Plenum, 1985), Vol. 31, p. 173.Google Scholar
14Bailey, G. C. and Hill, H. W., in New Industrial Resins, edited by Deanin, R. D. (ACS Symposium Series, Am. Chem. Soc., Washington, DC, 1972).Google Scholar
15Schacklette, L.W., Elsenbauer, R. L., Chance, R. R., Eckhardt, H., Frommer, J. E., and Baughman, R. H., J. Chem. Phys. 75, 1919 (1981).CrossRefGoogle Scholar
16Clarke, T. C., Kanazawa, K. K., Lee, Y. Y., Rabolt, J., Raynolds, J. R., and Street, G.B., J. Polym. Sci. Polym. Phys. Ed. 20, 117 (1982).CrossRefGoogle Scholar
17Mazurek, H., Day, D. R., Many, E. W., Abel, J. S., Senturia, S. D., Dresselhaus, M. S. and Dresselhaus, G., J. Polym. Sci. Polym. Phys. Ed. 21, 537 (1983).CrossRefGoogle Scholar
18Frommer, J. E., Elsenbauer, R. H., and Chance, R. R., “A Novel Phase of Organic Conductors: Conducting Polymer Solutions”, in Polymers in Electronics, edited by Davidson, T. (Am. Chem. Soc, Washington, DC, 1984), pp. 447–59.CrossRefGoogle Scholar
19Tabor, B.J., Magre, E.P., and Boon, J., European Polym. Journal 7, 1127 (1971).CrossRefGoogle Scholar
20Wellinghoff, S., Rybnikar, F., and Baer, E., J. Macromol. Sci. Phys. Ed. B10, 1 (1974).Google Scholar
21Bassett, G. A., Phil. Mag. Ser. 8 3, 1042 (1958).CrossRefGoogle Scholar
22Swei, G.S., Ph.D. Thesis, Dept. Macromol. Sci., Case Western Reserve Univ., Cleveland, OH, 1986.Google Scholar
23Ching, S., M.S. Thesis, Dept. Macromol. Sci., Case Western Reserve Univ., Cleveland, OH, 1983.Google Scholar
24Balik, C.M. and Hopfinger, A.J., Macromolecules 13, 999 (1980).CrossRefGoogle Scholar
25Rickert, S.E., Lando, J.B., Hopfinger, A.J., and Baer, E., Macromol. 12, 1053 (1979).CrossRefGoogle Scholar
26Kobayashi, K. and Takahashi, T., Kagaku (Tokyo) 34, 325 (1964).Google Scholar