Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T01:23:18.321Z Has data issue: false hasContentIssue false

Epitaxial growth of NiSi2 induced by sulfur segregationat the NiSi2/Si(100) interface

Published online by Cambridge University Press:  31 January 2011

Q.T. Zhao*
Affiliation:
Institute of Bio- and Nanosystems (IBN1-IT), and Center of Nanoelectronic Systems for Information Technology (CNI), Forschungszentrum Jülich GmbH, 52425 Ju¨lich, Germany
S.B. Mi
Affiliation:
Institute of Solid-State Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
C.L. Jia
Affiliation:
Institute of Solid-State Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
C. Urban
Affiliation:
Institute of Bio- and Nanosystems (IBN1-IT), and Center of Nanoelectronic Systems for Information Technology (CNI), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
C. Sandow
Affiliation:
Institute of Bio- and Nanosystems (IBN1-IT), and Center of Nanoelectronic Systems for Information Technology (CNI), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
S. Habicht
Affiliation:
Institute of Bio- and Nanosystems (IBN1-IT), and Center of Nanoelectronic Systems for Information Technology (CNI), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
S. Mantl
Affiliation:
Institute of Bio- and Nanosystems (IBN1-IT), and Center of Nanoelectronic Systems for Information Technology (CNI), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
*
a) Address all correspondence to this author. e-mail: q.zhao@fz-juelich.de
Get access

Abstract

Epitaxial growth of a NiSi2 layer was observed on S+ ion-implanted Si(100) at a low temperature of 550 °C. Depending on the S+ dose and the Ni thickness, we identified different nickel silicide phases. High quality and uniform epitaxial NiSi2 layers formed at temperatures above 700 °C with a 20-nm Ni on high dose S+ implanted Si(100), whereas no epitaxy was observed for a 36-nm Ni layer. We assume that the presence of sulfur at the silicide/Si(100) interface favors the nucleation of the NiSi2 phase. The S atom distributions showed ultrasteep S depth profiles (3 nm/decade) in the silicon, which results from the snow-plow effect during silicidation and the segregation of S to the interface due to the low solubility of S in both Si and the silicide.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zhao, Q.T., Breuer, U., Rije, E., Lenk, St., Mantl, S.: Tuning of NiSi/Si Schottky barrier heights by sulfur segregation during Ni silicidation. Appl. Phys. Lett. 86, 062108 2005CrossRefGoogle Scholar
2.Zhao, Q.T., Zhang, M., Knoch, J., Mantl, S.: Tuning of Schottky barrier heights by silicidation induced impurity segregation, in International Workshop on Junction Technology (Shanghai): Conference Digest (2006), p. 147Google Scholar
3.Nakatsuka, O., Okubo, K., Tsuchiya, Y., Sakai, A., Zaima, S., Yasuda, Y.: Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems. Jpn. J. Appl. Phys. 44, 5A2945 2005CrossRefGoogle Scholar
4.Falke, U., Fenske, F., Schulze, S., Hietschold, M.: XTEM studies of nickel silicide growth on Si(100) using a Ni/Ti bilayer system. Phys. Status Solidi A 162, 615 1997Google Scholar
5.de Reus, R., Tissink, H.C., Saris, F.W.: Low temperature epitaxial NiSi2 formation on Si(111) by diffusion Ni through amorphous Ni-Zr. J. Mater. Res. 5, 341 1990CrossRefGoogle Scholar
6.Lu, S.W., Nieh, C.W., Chen, L.J.: Epitaxial growth of NiSi2 on ion-implanted silicon at 250–280 °C. Appl. Phys. Lett. 49, 1770 1986CrossRefGoogle Scholar
7.Zhao, Q.T., Breuer, U., Lenk, St., Mantl, S.: Segregation of ion implanted sulfur in Si(100) after annealing and nickel silicidation. J. Appl. Phys. 102, 023522 2007CrossRefGoogle Scholar
8.Mi, S.B., Jia, C.L., Urban, K., Zhao, Q.T., Mantl, S.: NiSi2/Si interface chemistry and epitaxial growth mode. Acta Mater. 57, 1232 2009CrossRefGoogle Scholar
9.d’Heurle, F.M., Gas, P.: Kinetics of formation of silicides: A review. J. Mater. Res. 1, 205 1986Google Scholar
10.Olson, G.L., Kokorowski, S.A., Roth, J.A., Hess, L.D.: Laser-induced solid phase crystallization in amorphous silicon films in Laser-Solid Interactions and Transient Thermal Processing of Materials, edited by J. Narayan, W.L. Brown, R.A. Lemons (Mater. Res. Soc. Symp. Proc. 13, New York, NY, 1983), p. 141Google Scholar
11.d’Heurle, F., Petersson, C.S., Baglin, J.E.E., La Placa, S.J., Wong, C.Y.: Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds. J. Appl. Phys. 55, 4208 1984Google Scholar