Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T21:42:40.445Z Has data issue: false hasContentIssue false

Equilibrium phase relations in the Bi–Ca–Sr–Cu–O system at 850 and 900°Ca)

Published online by Cambridge University Press:  31 January 2011

C-L. Lee
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
J-J. Chen
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
W-J. Wen
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
T-P. Perng
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
J-M. Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
T-B. Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
T-S. Chin
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
R-S. Liu
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, Republic of China
P-T. Wu
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, Republic of China
Get access

Abstract

The phase relations of equilibrium compounds in the pseudoternary system Bi2O3–(Ca,Sr)O–CuO at 850 and 900°C were studied. The ratio of Ca : Sr was fixed at 1:2. Starting materials of Bi2O3, CaCO3, SrCO3, and CuO with various ratios were mixed, pressed into pellets, and heated at or above and then brought back to 850 or 900°C for different durations to ensure that equilibrium had been reached. The products were cooled in air or quenched in liquid nitrogen and then identified by x-ray powder diffraction. At 850°C, only the superconducting phase, Bi2CaSr2Cu2Ox (2122), was observed inside the triangle. The other stable phases were all positioned on the boundary lines, and included CuO·⅗MO, CuO·MO, CuO·2MO, 1.½Bi2O3·0.9MO, Bi2O3·4MO, Bi2O3·9MO, and a solid solution, Bi2O3·xMO, where 0.16  x  0.82 and MO represents ⅓(CaO·2SrO). At 900°C, the above boundary line phases remained stable but the 2122 phase was not observed. The tie lines among the stable phases in the two isotherms were established.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bednorz, J. G. and Müller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
3Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Paveau, B., Z. Phys. B 68, 421 (1987).CrossRefGoogle Scholar
4Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
5Sheng, Z. Z. and Hermann, A. M., Nature (London) 332, 138 (1988).CrossRefGoogle Scholar
6Tarascon, J. M., LePage, Y., Barboux, P., Bagley, B. G., Greene, L. H., McKinnon, W. R., Hull, G. W., Giroud, M., and Hwang, D. M., Phys. Rev. B 37, 9382 (1988).CrossRefGoogle Scholar
7Tarascon, J. M., McKinnon, W. R., Barboux, P., Hwang, D. M., Bagley, B. G., Greene, L. H., Hull, G. W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).CrossRefGoogle Scholar
8Hazen, R. M., Prewitt, C. T., Angel, R. J., Ross, N. L., Finger, L. W., Hadidiacos, C. G., Veblen, D. R., Heaney, P. J., Hor, P. H., Meng, R. L., Sun, Y. Y., Wang, Y. Q., Xue, Y. Y., Huang, Z. J., Gao, L., Bechtold, J., and Chu, C. W., Phys. Rev. Lett. 60, 1174 (1988).CrossRefGoogle Scholar
9Carim, A. H., Kentgens, A. P. M., Hengst, J. H. T., deLeeuw, D. M., and Mutsaers, C. A. H. A., J. Mater. Res. 3 (6), 1317 (1988).CrossRefGoogle Scholar
10Sleight, A. W., Subramanian, M. A., and Torardi, C. C., MRS Bul-letin XIV (1), 45 (1989).Google Scholar
11Maeda, A., Yabe, T., Ikuta, H., Nakayama, Y., Wada, T., Okuda, S., Itoh, T., Izumi, M., Uchinokura, K., Uchida, S., and Tanaka, S., Jpn. J. Appl. Phys. 27, L661 (1988).Google Scholar
12Tanaka, Y., Fukutomi, M., Asano, T., and Maeda, H., Jpn. J. Appl. Phys. 27, L548 (1988).CrossRefGoogle Scholar
13Koyama, S., Endo, U., and Kawai, T., Jpn. J. Appl. Phys. 27, L1861 (1988).CrossRefGoogle Scholar
14Statt, B. W., Wang, Z., Lee, M. J. G., Yakhmi, J. V., Camargo, P. C. de, Major, J. F., and Rutter, J. W., Physica C 156, 251 (1988).CrossRefGoogle Scholar
15Lee, C-L., Chen, J-J., Wen, W-J., Perng, T-P., Wu, J-M., and Wu, T-B., to be submitted to J. Mater. Res.Google Scholar
16Cassedanne, J. and Campelo, G. P., An. Acad. Brasil. Cienc. 38 (1), 36 (1966).Google Scholar
17Boivin, J-C., Thomas, D., and Tridot, G., C. R. Acad. Sc. Paris 276, 1105 (1973).Google Scholar
18Teske, L. and Miiller-Buschbaum, H., Z. Anorg. Allg. Chem. 371, 325 (1969).CrossRefGoogle Scholar
19Teske, L. and Miiller-Buschbaum, H., Z. Anorg. Allg. Chem. 379, 234 (1970).CrossRefGoogle Scholar
20He, Q., Yu, D-A., Chang, S-A., Wang, R-K., and Zhang, H., Phys. Lett. A 133, 441 (1988).CrossRefGoogle Scholar
21Hahn, J., Mason, T. O., Hwu, S-J., and Poeppelmeier, K. R., Chemtronics 2, 126 (1987).Google Scholar
22McCarron, E. M. III, Subramanian, M. A., Calabrese, J. C., and Harlow, R. L., Mater. Res. Bull. 23, 1355 (1988).CrossRefGoogle Scholar
23Siegrist, T., Schneemeyer, L. R., Sunshine, S. A., Waszczak, J. V., and Roth, R. S., Mater. Res. Bull. 23, 1429 (1988).Google Scholar
24Saggio, J. A., Sujata, K., Hahn, J., Hwu, S. J., Poeppelmeier, K. R., and Mason, T. O., J. Am. Ceram. Soc. 72, 849 (1989).Google Scholar
25Guillermo, R., Conflant, P., Boivin, J-C., and Thomas, D., Revue de Chim. Min. 15, 153 (1978).Google Scholar
26Conflant, P., Boivin, J-C., and Thomas, D., Solid, J.State Chem. 18, 133 (1976).Google Scholar
27Takoyama, E.-Muromachi, Uchida, Y., Ono, A., Izumi, F., Onoda, M., Matsui, Y., Kosuda, K., Takekawa, S., and Kato, K., Jpn. J. Appl. Phys. 27, L365 (1988).CrossRefGoogle Scholar
28Yoshida, M., Jpn. J. Appl. Phys. 27, L2044 (1988).CrossRefGoogle Scholar