Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T17:33:06.450Z Has data issue: false hasContentIssue false

Explosion Phase Formation of Nanocrystalline Boron Nitrides Upon Pulsed-Laser-Induced Liquid/Solid Interfacial Reaction

Published online by Cambridge University Press:  31 January 2011

J.B. Wang
Affiliation:
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Zhongshan University, Guangzhou 510275, People's Republic of China, and Department of Physics, Xiangtan University, Xiangtan 411105, People's Republic of China
X.L. Zhong
Affiliation:
Department of Physics, Xiangtan University, Xiangtan 411105, People's Republic of China
C.Y. Zhang
Affiliation:
Department of Physics, Xiangtan University, Xiangtan 411105, People's Republic of China
B.Q. Huang
Affiliation:
Department of Physics, Xiangtan University, Xiangtan 411105, People's Republic of China
G.W. Yang
Affiliation:
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Zhongshan University, Guangzhou 510275, People's Republic of China, and Department of Physics, Xiangtan University, Xiangtan 411105, People's Republic of China
Get access

Abstract

Boron nitride (BN) nanocrystals with explosion (E) phase were prepared by a novel laser-assisted materials fabrication, i.e., pulsed-laser-induced liquid (acetone)/solid (hexagonal boron nitride bulk) interfacial reaction at normal temperature and pressure. Typical diameters of these synthesized quasi-spherical BN nanocrystals were in the range of 30 to 80 nm. Transmission electron microscopy, x-ray diffraction, and Fourier transformed infrared spectroscopy were used to identify the morphologies and structures of the synthesized nanocrystals. Additionally, we proposed the formation mechanism of cubic-BN and E-BN nanocrystals upon pulsed-laser-induced liquid/solid interfacial reaction, in which both liquid and solid were simultaneously involved.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vel, L., Demazeau, D., and Etourneau, J., Mater. Sci. Eng. B 10, 149 (1991).CrossRefGoogle Scholar
2.Davis, R.F., Proc. IEEE 79, 702 (1991).Google Scholar
3.Ichinose, S., Sstiton, H., and Hirotsu, Y., Surf. Coat. Technol. 43/44, 116 (1990).CrossRefGoogle Scholar
4.Smirnova, T.P., Jakovkina, L.V., Jaskin, I.L., Sysoera, N.P., and Amosor, I., Thin Solid Films 237, 32 (1994).Google Scholar
5.Batzanov, S.B., Blochin, C.E., and Deribas, A.A., J. Struct. Chem. 7, 209 (1965).CrossRefGoogle Scholar
6.Akashi, T., Sawaoka, A.B., Saito, S., and Araki, M., Jpn. J. Appl. Phys. 15, 89 (1976).Google Scholar
7.Akashi, T., Pak, H.P., and Sawaoka, A.B., J. Mater. Sci. 71, 4060 (1986).CrossRefGoogle Scholar
8.Sokolowska, A. and Olszyna, A., J. Cryst. Growth 121, 733 (1992).CrossRefGoogle Scholar
9.Sokolowska, A. and Olszyna, A., J. Cryst. Growth 116, 507 (1992).Google Scholar
10.Olszyna, A., Muftah, M., and Sokolowska, A., Diamond Relat. Mater. 4, 386 (1995).CrossRefGoogle Scholar
11.Olszyna, A., Konwerska-Hrabowska, J., and Lisicki, M., Diamond Relat. Mater. 6, 617 (1997).Google Scholar
12.Laser Ablation: Principles and Applications, edited by Miller, J.C. (Springer, Berlin, Germany, 1994), p. 1.CrossRefGoogle Scholar
13.Dickinson, J.T., Langford, S.C., and Jensen, L.C., in Laser Ablation: Mechanisms and Applications, edited by Miller, J.C. and Haglund, R.F. Jr (Springer, Berlin, Germany, 1991), p. 301CrossRefGoogle Scholar
14.Zhu, S., Lu, Y.F., Hong, L.M., and Chen, X.Y., J. Appl. Phys. 89, 2400 (2001).Google Scholar
15.Lu, Y.F., Huang, S.M., Wang, S.B., and Shen, Z.X., Appl. Phys. A 66, 543 (1998).CrossRefGoogle Scholar
16.Liu, C.H., Peng, W., and Sheng, L.M., Carbon 39, 144 (2001).Google Scholar
17.Yang, G.W., Wang, J.B., and Liu, Q.X., J. Phys.: Condens. Matter 10, 7923 (1998); J.B. Wang, C.Y. Zhang, X.L. Zhong, and G.W. Yang, Chem. Phys. Lett. 261, 86 (2002).Google Scholar
18.Yang, G.W. and Wang, J.B., Appl. Phys. A 71, 343 (2000).CrossRefGoogle Scholar
19.Sanjurjo, J.A., López-Cruz, E., Vogl, P., and Cardona, M., Phys. Rev. B 28, 4579 (1993).CrossRefGoogle Scholar
20.Saitoh, H. and Yarbrough, W.A., Appl. Phys. Lett. 58, 2228 (1991).Google Scholar
21.Mineta, S., Thin Solid Films 189, 125 (1990).Google Scholar
22.Wentzcovitch, R.M., Chang, K.J., and Cohen, M.L., Phys. Rev. B 34, 1071 (1996).CrossRefGoogle Scholar
23.Fahy, S., Phys. Rev. B 51, 12873 (1995).CrossRefGoogle Scholar
24.Gielisse, P.J., Mitra, S.S., Pendl, J.N., Griffis, R.D., Mansur, L.C., Marshall, R., and Pescoe, X., Phys. Rev. 155, 1039 (1967).CrossRefGoogle Scholar
25.Chrenko, R.M., Solid State Commun. 14, 511 (1974).Google Scholar
26.Poondi, D., Dobbins, T., and Singh, J., J. Mater. Sci. 35, 6237 (2000).CrossRefGoogle Scholar
27.Yang, G.W. and Wang, J.B., Appl. Phys. A 72, 475 (2001).CrossRefGoogle Scholar
28.Liu, Q.X., Yang, G.W., and Zhang, J.X., Chem. Phys. Lett. 373, 56 (2003).Google Scholar
29.Ronning, C., Feldermann, H., and Hofsass, H., Diamond Relat. Mater. 9, 1767 (2000).Google Scholar
30.Zhang, C.Y., Wang, J.B., Zhong, X.L., and Yang, G.W., Chem. Phys. Lett. 370, 522 (2003).Google Scholar
31.Barther, L., Fabbro, R., Peyre, P., Tollier, L., and Bartinicki, E., J. Appl. Phys. 89, 2836 (1997).Google Scholar
32.Sakka, T., Iwanaga, S., and Ogata, Y.H., J. Chem. Phys. 112, 8645 (2000).CrossRefGoogle Scholar
33.Poondi, D. and Singh, J., J. Mater. Sci. 35, 2467 (2000).Google Scholar