Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-15T02:41:20.633Z Has data issue: false hasContentIssue false

Fabrication of ultrathin film capacitors by chemical solution deposition

Published online by Cambridge University Press:  31 January 2011

Geoff L. Brennecka*
Affiliation:
Sandia National Laboratories, Electronic and Nanostructured Materials, Albuquerque, New Mexico 87185-1411
Bruce A. Tuttle
Affiliation:
Sandia National Laboratories, Electronic and Nanostructured Materials, Albuquerque, New Mexico 87185-1411
*
a)Address all correspondence to this author. e-mail: glbrenn@sandia.gov
Get access

Abstract

A facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of ⩾1 mm2 and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Thus, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nm but are still macroscopically addressable with specific capacitance values >160 nF/mm2.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., TYamada, Streiffer, S.: Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 2006CrossRefGoogle Scholar
2Trolier-McKinstry, S.Muralt, P.: Thin film piezoelectrics for MEMS. J. Electroceram. 12, 7 2004CrossRefGoogle Scholar
3Brennecka, G.L., Huebner, W., Tuttle, B.A.Clem, P.G.: Use of stress to produce highly oriented tetragonal lead zirconate titanate (PZT 40/60). J. Am. Ceram. Soc. 87, 1459 2004Google Scholar
4Ahn, C.H., Rabe, K.M.Triscone, J-M.: Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 303, 488 2003Google Scholar
5Rudiger, A., Schneller, T., Roelofs, A., Tiedke, S., Schmitz, T.Waser, R.: Nanosize ferroelectric oxides–tracking down the superparaelectric limit. Appl. Phys. A 80, 1247 2005Google Scholar
6Kim, Y.S., Kim, D.H., Kim, J.D., Chang, Y.J., Noh, T.W., Kong, J.H., Char, K., Park, Y.D., Bu, S.D., Yoon, J-G.Chung, J-S.: Critical thickness of ultrathin ferroelectric BaTiO3 films. Appl. Phys. Lett. 86, 102907 2005CrossRefGoogle Scholar
7Fong, D.D.Thompson, C.: In-situ synchrotron x-ray studies of ferroelectric thin films. Annu. Rev. Mater. Res. 36, 431 2006Google Scholar
8DeMarquis, V.K., Brooks, R.A.Harris, J.O.: Reliability and Volumetric Evaluation of Ceramic Capacitors for Pulse-Discharge Applications, (Sandia National Laboratories, SAND Report, SAND2003-0241C) 2003Google Scholar
9Tuttle, B.A.Schwartz, R.W.: Solution deposition of ferroelectric thin films. MRS Bull. 6, 49 1996CrossRefGoogle Scholar
10Yi, G., Wu, Z.Sayer, M.: Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro-optic properties. J. Appl. Phys. 64, 2717 1988Google Scholar
11Tani, T.Payne, D.A.: Lead oxide coatings on sol-gel-derived lead lanthanum zirconate titanate thin layers for enhanced crystallization into the perovskite structure. J. Am. Ceram. Soc. 77, 1242 1994Google Scholar
12Miller, K.T., Lange, F.F.Marshall, D.B.: The instability of polycrystalline thin films. J. Mater. Res. 5, 151 1990CrossRefGoogle Scholar
13Seifert, A., Vojta, A., Speck, J.S.Lange, F.F.: Microstructural instability in single-crystal thin films. J. Mater. Res. 11, 1470 1996Google Scholar
14Frey, M.H.Payne, D.A.: Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54, 3158 1996CrossRefGoogle ScholarPubMed
15Shaw, T.M., Trolier-McKinstry, S.McIntyre, P.C.: The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263 2000Google Scholar
16Park, J.H.Trolier-McKinstry, S.: Dependence of dielectric and piezoelectric properties on film thickness for highly {100}-oriented lead magnesium niobate-lead titanate (70/30). J. Mater. Res. 16, 268 (2001)CrossRefGoogle Scholar
17Frey, M.H., Xu, Z., Han, P. and Payne, D.A.: The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics 206–207, 337 1998Google Scholar
18Kalinin, S.V. and Bonnell, D.A.: Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 63, 125411 2001Google Scholar
19Stengel, M. and Spaldin, N.A.: Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679 2006Google Scholar
20Dimos, D.B., Schwartz, R.W. and Lockwood, S.J.: Control of leakage resistance in Pb(Zr,Ti)O3 thin films by donor doping. J. Am. Ceram. Soc. 77, 3000 1994CrossRefGoogle Scholar
21Dimos, D.B. and Mueller, C.H.: Perovskite thin films for high-frequency capacitor applications. Annu. Rev. Mater. Sci. 28, 397 1998CrossRefGoogle Scholar
22Wouters, D.J., Willems, G., Groeseneken, G., Maes, H.E., Brooks, K., and Klissurska, R.: The influence of dopants on the leakage current in PZT thin-film ferroelectric capacitors, Science and Technology of Electroceramic Thin Films, Vol. 284, NATO Advanced Study Institutes, edited by O. Auciello and R. Waser (Kluwer, London, UK) 279 1995Google Scholar
23Brennecka, G.L., Parish, C.M., Tuttle, B.A. and Brewer, L.N.: Reversibility of the perovskite ↔ pyrochlore transition in lead zirconate titanate-based thin films (2007, in preparation)Google Scholar
24Chen, S-Y. and Chen, I-W.: Temperature-time texture transition of Pb(Zr1-xTix)O3 thin films: I, role of Pb-rich intermediate phases. J. Am. Ceram. Soc. 77, 2332 1994CrossRefGoogle Scholar
25Wu, A., Vilarinho, P.M., Salvado, I.M. Miranda, Baptista, J.L., Zhou, Z., Reaney, I.M., Ramos, A.R. and de Silva, M.F.: Effect of lead zirconate titanate seeds on PtxPb formation during the pyrolysis of lead zirconate titanate thin films. J. Am. Ceram. Soc. 85, 641 2002Google Scholar
26Tuttle, B.A., Brennecka, G.L., Williams, D.P., Rodriguez, M.A. and Headley, T.J.: High energy density PLZT thin film capacitors Advanced Dielectric, Piezoelectric, and Ferroelectric Thin Films, edited by B.A. Tuttle, C. Chen, Q. Xia, and R. Ramesh (Ceram. Trans. 162, Indianapolis, IN) 2004), p. 17Google Scholar
27Williams, D.P., Tuttle, B.A., Grubbs, R.U. and Clem, P.G.: Fabrication and characterization of integrated PLZT thin film capacitors via aerosol spray deposition, in Ceramic Interconnect Technology: The Next Generation II (Proceedings of the IMAPS/ACerS Ceramic Interconnects Conference, Denver, CO, 2004).Google Scholar