Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T03:47:22.088Z Has data issue: false hasContentIssue false

Ferroelectric thin films with complex composition of PNN–PZN–PMN–PZ–PT and excess NiO

Published online by Cambridge University Press:  31 January 2011

Phoi Chin Goh
Affiliation:
Institute of Materials Research and Engineering (IMRE), Singapore 117602
Kui Yao*
Affiliation:
Institute of Materials Research and Engineering (IMRE), Singapore 117602
Zhong Chen
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798
*
a) Address all correspondence to this author. e-mail: k-yao@imre.a-star.edu.sg
Get access

Abstract

Ferroelectric thin films of the 0.1Pb(Ni1/3Nb2/3)O3–0.35Pb(Zn1/3Nb2/3)O3–0.15Pb (Mg1/3Nb2/3)O3–0.1PbZrO3–0.3PbTiO3 (PNN–PZN–PMN–PZ–PT) complex oxide system were prepared on Pt/Ti/SiO2/Si substrates using a polymer-modified sol-gel method followed by a rapid thermal annealing (RTA) process. It was found that the addition of excess NiO is effective in stabilizing the perovskite phase while suppressing the pyrochlore phase. The crystalline structure and morphology of the films with different amounts of access NiO were studied with x-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. The electrical properties, including dielectric, ferroelectric, and piezoelectric, showed a significant improvement with excess NiO. The film sample with 3 mol% of excess NiO exhibited optimized electrical properties. Different parameters, including tolerance factors on the basis of ionic radii, electronegativity differences between cations and anions, and oxygen bond valences, were applied to analyze the stability of the perovskite phase with different amount of excess NiO. Analysis results indicated that only the bond-valence theory could explain the effect of excess NiO on the stability of the perovskite phase under the assumption that the excess Ni2+ entered the A sites of the perovskite structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Saha, D., Sen, A.Maiti, H.S.: Low temperature liquid phase sintering of lead magnesium niobate. Ceram. Int. 25, 145 1999CrossRefGoogle Scholar
2Chen, I-W., Li, P.Wang, Y.: Structural origin of relaxor perovskites. J. Phys. Chem. Solids 57, 1525 1996Google Scholar
3Alberta, E.F.Bhalla, A.S.: Low-temperature properties of lead nickel-niobate ceramics. Mater. Lett. 54, 47 2002CrossRefGoogle Scholar
4Goel, T.C., Kumar, P., James, A.R.Prakash, C.: Processing and dielectric properties of sol-gel derived PMN-PT (68:32) thin films. J. Electroceram. 13, 503 2004CrossRefGoogle Scholar
5Kumar, P., Thakur, O.P., Prakash, C.Goel, T.C.: Ferroelectric properties of bulk and thin films of PMNT system. Physica B (Amsterdam) 357, 241 2005CrossRefGoogle Scholar
6Hayes, J.M., Gururaja, T.R., Gregory, G.L.Cross, L.E.: Sol-gel processing of 0.91Pb(Zn1/3Nb2/3)O3–0.09PbTiO3: Stabilization of the perovskite phase. Mater. Lett. 5, 396 1987CrossRefGoogle Scholar
7La-Orauttapong, D., Noheda, B., Te, Z.G., Gehring, P.M., Toulouse, J., Cox, D.E.Shirane, G.: Phase diagram of the relaxor ferroelectric (1−x)Pb(Zn1/3Nb2/3)O3xPbTiO3. Phys. Rev. B 65, 144101 2002CrossRefGoogle Scholar
8Choi, J-J., Park, G-T., Lee, S-M.Kim, H-E.: Sol-gel preparation of thick PZN-PZT film using a diol-based solution coating polyvinylpyrrolidone for piezoelectric applications. J. Am. Ceram. Soc. 88, 3049 2005CrossRefGoogle Scholar
9Fan, H.Kim, H-E.: Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate–lead zirconate titanate. J. Appl. Phys. 91, 317 2002CrossRefGoogle Scholar
10Gan, B.K., Yao, K.He, X.: Complex oxide ferroelectric ceramics Pb(Ni1/3Nb2/3)O3–Pb(Zn1/3Nb2/3)O3–Pb(Mg1/3Nb2/3) O3–PbZrO3–PbTiO3 with low sintering temperature. J. Am. Ceram. Soc. 90, 1186 2007CrossRefGoogle Scholar
11Dagalish, M.Kemmitt, T.: Ferroelectric thin films—Research, development and commercialization. IPENS Trans. 27, 21 2000Google Scholar
12Zhou, C.Newns, D.M.: Intrinsic dead layer effect and the performance of ferroelectric thin film capacitors. J. Appl. Phys. 82, 3081 1997CrossRefGoogle Scholar
13Polla, D.L.Francis, L.F.: Processing and characterization of piezoelectric materials and integration into micromechanical systems. Annu. Rev. Mater. Sci. 28, 563 1998CrossRefGoogle Scholar
14Gao, P., Yao, K., Tang, X., He, X., Shannigrahi, S., Lou, Y., Zhang, J.Okada, K.: A piezoelectric micro-actuator with a three dimensional structure and its microfabrication. Sens. Actuators, A 130, 491 2006CrossRefGoogle Scholar
15Schwartz, R.W.: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 1997CrossRefGoogle Scholar
16Dawber, M., Rabe, K.M.Scott, J.F.: Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083 2005CrossRefGoogle Scholar
17Song, Y.J., Zhu, Y.Desu, S.B.: Low temperature fabrication and properties of sol-gel derived (111) oriented Pb(Zr1−xTix)O3 thin films. Appl. Phys. Lett. 72, 2686 1998CrossRefGoogle Scholar
18Kim, J.H.Lange, F.F.: Epitaxial growth of PbZr0.5Ti0.5O3 thin films on (001) LaAlO3 by the chemical solution deposition method. J. Mater. Res. 14, 4004 1999CrossRefGoogle Scholar
19Kim, G.B., Jung, J.M.Choi, S.W.: Synthesis and ferroelectric properties of Ni-modified 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 solid solution system. Jpn. J. Appl. Phys. 38, 5470 1999CrossRefGoogle Scholar
20Ahn, C-W., Noh, S-Y., Hahm, S., Ryu, J., Uchino, K., Yoon, S-J.Song, J-S.: Low-temperature sintering and piezoelectric properties of ZnO-added 0.41Pb(Ni1/3Nb2/3)O3–0.36PbTiO3–0.23PbZrO3 ceramics. Jpn. J. Appl. Phys. 42, 5676 2003CrossRefGoogle Scholar
21Zhu, C., Yong, Z., Chento, Y.Bangchao, Y.: Investigation on the effects of the excess Pb content and annealing conditions on the microstructure and ferroelectric properties of PZT (52-48) films prepared by sol-gel method. Appl. Sur. Sci. 253, 1500 2006CrossRefGoogle Scholar
22Cho, J-H., Park, I-K., Chung, H-T.Kim, H-G.: The effects of Cd-substitution site on sintering behavior and electrical properties in Pb(Ni1/3Nb2/3)O3–PbZrO3–PbTiO3 ceramics. Jpn. J. Appl. Phys. 36, 181 1997CrossRefGoogle Scholar
23Shannigrahi, S.R., Tay, F.E.H., Yao, K.Choudhary, R.N.P.: Effects of rare earth (La, Nd, Sm, Eu, Gd, Dy, Er, and Yb) ions substitutions on the microstructural and electrical properties of sol-gel grown PZT ceramics. J. Euro. Ceram. Soc. 24, 163 2004CrossRefGoogle Scholar
24Chen, J., Udayakumar, K.R., Brooks, K.G.Cross, L.E.: Rapid thermal annealing of sol-gel derived lead zirconate titanate thin films. J. Appl. Phys. 71, 4465 1992CrossRefGoogle Scholar
25Araujo, E.B.Eiras, J.A.: PZT thin films produced by oxide precursors and crystallized by conventional and RTA process. J. Eur. Ceram. Soc. 21, 1513 2001CrossRefGoogle Scholar
26Yao, K., Shuhui, Yu.Tay, F.E.H.: Preparation of perovskite Pb(Zn1/3Nb2/3)O3-based thin films from polymer-modified solution precursors. Appl. Phys. Lett. 88, 052904 2006CrossRefGoogle Scholar
27Yu, S., Yao, K., Shannigrahi, S.Hock, F.T.E.: Effects of poly(ethylene glycol) additive molecular weight on the microstructure and properties of sol-gel derived lead zirconate titanate thin films. J. Mater. Res. 18, 737 2003CrossRefGoogle Scholar
28Yao, K.Tay, F.E.H.: Measurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 113 2003Google ScholarPubMed
29Kighelman, Z., Damjanovic, D., Seifert, A., Sagalowicz, L.Setter, N.: Relaxor behavior and electromechanical properties of Pb(Mg1/3Nb2/3)O3 thin films. Appl. Phys. Lett. 73, 2281 1998CrossRefGoogle Scholar
30Maiwa, H.Ichinose, N.: Electrical and electromechanical properties of Pb(Mg1/3Nb2/3)O3(50%)–PbTiO3(50%) thin films prepared by chemical solution deposition. Jpn. J. Appl. Phys. 45, 850 2006CrossRefGoogle Scholar
31Goldschmidt, V.M.: Geochemical distribution law of the elements. Skrifter Norske Vidensk.-Akad. Oslo. I. Mat.-Naturvidensk. Kl. 1, 1(8), 112 1926Google Scholar
32Wakiya, N., Shinozaki, K.Mizutani, N.: Estimation of phase stability in Pb(Mg1/3Nb)O3 and Pb(Zn1/3Nb2/3)O3 using the bond valence approach. J. Am. Ceram. Soc. 80, 3217 1997CrossRefGoogle Scholar
33Brese, N.E.O’Keeffe, M.: Bond-valence parameters for solids. Acta Crystallogr., Sect. B 47, 192 1991CrossRefGoogle Scholar