Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T23:51:58.543Z Has data issue: false hasContentIssue false

Flexible Bi2Sr2CaCu2O8+x tapes by metallo-organic deposition

Published online by Cambridge University Press:  08 February 2011

L.S. Hung
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650
D.K. Chatterjee
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650
Get access

Abstract

A metallo-organic deposition technique was employed to grow Bi2Sr2CaCu2O8+x flexible films on unpolished metal foils (stainless steel and silver). Since strong interactions occurred at elevated temperatures between stainless steel and superconducting oxides, HfO2 buffer layers prepared by ion-assisted deposition were used to stabilize the system and Na additions were used to reduce processing temperature and enhance grain growth. The transition of superconducting films on stainless steel was complete around 70–73 K, and the critical current density was about 1000 A/cm2 at 10 K. Silver appears to be an attractive metal support due to its chemical stability and mechanical ductility. The film on silver showed the onset to superconductivity at 77 K, attaining zero resistance at 73 K. The critical current density in zero magnetic field was approximately 27000 A/cm2 at 20 K, comparable to that obtained from MOD films on MgO (100).

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kohno, O., Ikeno, Y., Sadakata, N., Aoki, S., Sugimoto, M., and Nakagawa, M., Jpn. J. Appl. Phys. 26, 1653 (1987).CrossRefGoogle Scholar
2Matsuda, S., Okada, A., Morimoto, T., and Alhar, K., in High Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 695.Google Scholar
3Singh, J. P., Shi, D., and Capone, D. W., II, Appl. Phys. Lett. 53, 237 (1988).CrossRefGoogle Scholar
4Hikata, T., Salo, K-I., and Hitotsuyanagi, H., Jpn. J. Appl. Phys. 28, 82 (1989).CrossRefGoogle Scholar
5Ozaki, M., Harada, N., Akashita, S., and Chang, J. C., in Science and Technology of Thin Film Superconductors, edited by McConnell, R. D. and Wolf, S. A. (Plenum, New York, 1989), p. 363.CrossRefGoogle Scholar
6Witanachchi, S., Chang, J., Zhu, Y. Z., Patel, S., and Shaw, D. T., in Final Program and Abstracts at 1989 Fall Meeting of MRS (Boston, MA, 1989), p. 469.Google Scholar
7Agostinelli, J. A., Paz-Pujalt, G. R., and Mehrotra, A. K., Physica C 156, 208 (1988).CrossRefGoogle Scholar
8Hung, L. S., Lee, S. T., Braustein, G. H., and Agostinelli, J. A., J. Appl. Phys. 66, 463 (1989).CrossRefGoogle Scholar
9Heine, K., Tenbrink, J., and Thoner, M., Appl. Phys. Lett. 55, 2441 (1989).CrossRefGoogle Scholar
10Sekine, H., Itoh, K., Inoue, K., Maeda, H., and Mumata, K., Appl. Phys. Lett. 55, 2772 (1989).CrossRefGoogle Scholar
11Hung, L. S. (unpublished data).Google Scholar
12Cuomo, J. J. and Rossnagel, S. M., Nucl. Instrum. Methods. B 19/20, 963 (1987).CrossRefGoogle Scholar
13Martin, P. J., J. of Mater. Sci. 21, 1 (1986).CrossRefGoogle Scholar
14Freire, F. L. Jr, Leite, C. V. Barros, Patnaik, B. K., Baptista, G. B., Naugle, D., Pandey, R. K., and Kirk, W., J. Appl. Phys. 65, 400 (1989).CrossRefGoogle Scholar
15Samsonov, G. V., The Oxide Handbook (IFI/Plenum, New York, 1982).CrossRefGoogle Scholar
16Metals Handbook (American Society for Metals, Metals Park, OH, 1985).Google Scholar
17Ekin, J. W., Braginski, A. I., Panson, A. J., Janocko, M. A., Capone, D. W., IIZaluzec, N. J., Flandermeyer, B., Lima, O. F. de, Hong, M., Kwo, J., and Liou, S. H., J. Appl. Phys. 62, 4821 (1987).CrossRefGoogle Scholar
18Paterno, G., Alvani, C., Casadio, S., Gambardella, U., and Maritato, L., Appl. Phys. Lett. 53, 609 (1988).CrossRefGoogle Scholar
19Sen, S., Chen, I-G., Chen, C. H., and Stefanescu, D. M., Appl. Phys.Lett. 54, 766 (1989).CrossRefGoogle Scholar
20Singh, J. P., Lieu, H. J., Poeppel, R. B., Voorhees, E. V., Goudey, G. T., Winsley, K., and Shi, D., J. Appl. Phys. 66, 3154 (1989).CrossRefGoogle Scholar
21Su, Z. P., Zhao, Y., Sun, S. F., Chen, Z. Y., Chen, X. H., and Zhang, Q. R., Solid State Commun. 69, 1067 (1989).Google Scholar
22Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., Dover, R. B. van, Kammlott, G. W., Fastnacht, B. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
23Alford, N. M., Birchall, J. D., Clegg, W. J., and Kendall, K., J. Appl. Phys. 65, 2856 (1989).CrossRefGoogle Scholar
24Sen, A., Sharma, A. D., and Maiti, H. S., Solid State Commun. 70, 657 (1989).CrossRefGoogle Scholar
25Hoshino, K. and Takahara, H., Jpn. J. Appl. Phys. 28, 1214 (1989).CrossRefGoogle Scholar
26Hikata, T., Nishikawa, T., Mukai, H., Sato, K. I., and Hitotsuyanagi, H., Jpn. J. Appl. Phys. 28, 1204 (1989).CrossRefGoogle Scholar
27Sekine, H., Inoue, K., Maeda, H., and Numata, K., J. Appl. Phys. 66, 2762 (1989).CrossRefGoogle Scholar
28Kanai, T., Kato, T., and Matsuda, S-P., Jpn. J. Appl. Phys. 28, 551 (1989).CrossRefGoogle Scholar
29Bremert, O., Michaelsen, C., and Krebs, H. U., J. Appl. Phys. 65, 1018 (1989).CrossRefGoogle Scholar
30Martin, S., Fiory, A. T., Fleming, R. M., Espinosa, G. P., and Cooper, A. S., Appl. Phys. Lett. 54, 72 (1989).CrossRefGoogle Scholar
31van Dover, R. B., Schneemeyer, L. F., Gyorgy, E. M., and Waszczak, J. V., Appl. Phys. Lett. 52, 1910 (1988).CrossRefGoogle Scholar
32Rice, C. E., Levi, A. F. J., Fleming, R. M., Marsh, P., Baldwin, K. W., Anzlowar, M., Wite, A. E., Short, K. T., Makahara, S., and Stormer, H. L., Appl. Phys. Lett. 52, 1828 (1988).CrossRefGoogle Scholar
33Zhang, L. M., Wessels, B. W., Tonge, L. M., and Marks, T. J., Appl. Phys. Lett. 56, 976 (1990).CrossRefGoogle Scholar
34Itoh, M., Ishigaki, H., and Demizu, K., Jpn. J. Appl. Phys. 28, 1527 (1989).CrossRefGoogle Scholar
35Verhoeven, J. D., Bevolo, A. J., McCallum, R. W., Gibson, E. D., and Noak, M. A., Appl. Phys. Lett. 52, 745 (1988).CrossRefGoogle Scholar
36Kroeger, D. M., Choudhury, A., Brynestad, J., Williams, R. K., Padgett, R. A., and Coghlan, W. A., J. Appl. Phys. 64, 331 (1988).CrossRefGoogle Scholar
37Agostinelli, J. A. (private communication).Google Scholar