Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T04:14:57.507Z Has data issue: false hasContentIssue false

Formation and characterization of crystalline iron oxide films on self-assembled organic monolayers and their in situ patterning

Published online by Cambridge University Press:  31 January 2011

Hyunjung Shin
Affiliation:
Nano System Laboratory, Samsung Advanced Institute of Technology and CRI, P.O. Box 111, Suwon, Korea 440–600
Jong Up Jeon
Affiliation:
Nano System Laboratory, Samsung Advanced Institute of Technology and CRI, P.O. Box 111, Suwon, Korea 440–600
Y. Eugene Pak
Affiliation:
Micro Electro-Mechanical System (MEMS) Laboratory, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea
Hyejin Im
Affiliation:
Department of Ceramic Engineering, YonSei University, Seoul, Korea
Eung Soo Kim
Affiliation:
Department of Materials Engineering, Kyonggi University, Suwon, Korea
Get access

Abstract

Crystalline and pore-free films of α–Fe2O3 were prepared on hydrophilic self-assembled organic monolayers (DTT-SAMs) at 80 °C. Subsequently, Fe3O4 and γ–Fe2O3 films were synthesized via post annealing of as-deposited α–Fe2O3. In situ patterning of crystalline iron oxide thin layers was achieved via microcontact printing (μCP) and selective deposition. μCP was used to pattern two different surface moieties of self-assembled organic monolayers (SAMs) on Au–Cr–Si substrates. An elastomeric stamp was used to transfer either hexadecanethiol (HDT) SAMs, which are to sustain deposition of iron oxide precipitates, or hydrophilic SAMs [e.g., dithiothreitol (DTT)]. Selective deposition was realized through precipitation of iron oxide phases. Iron oxide films were deposited onto hydrophilic SAMs, but not onto HDT surfaces. Line (width of <1 μm) patterns in crystalline α–Fe2O3 thin films were obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Koster, E., in Magnetic Recording Technology, edited by Denise Mee, C. and Daniel, Eric D.. McGraw-Hill, New York, 1995, pp. 3.37–3.49.Google Scholar
2.Dhara, S., Rastogi, A.C., and Das, B.K., J. Appl. Phys. 74, 7019 (1993).CrossRefGoogle Scholar
3.Isuii, O. and Senda, M., J. Appl. Phys. 77, 5828 (1995).CrossRefGoogle Scholar
4.Gao, Y., Kim, Y.J., and Chamber, S.A., J. Mater. Res. 13, 2003 (1998).CrossRefGoogle Scholar
5.Lin, J.K., Sivertsen, J.M., and Judy, J.H., J. Appl. Phys. 57, 4000 (1985).CrossRefGoogle Scholar
6.Ulman, A., An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic Press, New York, 1991);Google Scholar
(b)Ulman, A., Adv. Mater., 2, 573 (1990).CrossRefGoogle Scholar
7.Shin, H., Collins, R.J., De Guire, M.R., Heuer, A.H., and Sukenik, C.N., J. Mater. Res. 10, 692 (1995).CrossRefGoogle Scholar
8.Bunker, B.C., Rieke, P.C., Tarasevich, B.J., Campbell, A.A., Fryxell, G.F., Graff, G.L., Song, L., Liu, J., Virden, J.W., and McVey, G.L., Science 264, 48 (1994).CrossRefGoogle Scholar
9.Agarwal, M., De Guire, M.R., and Heuer, A.H., J. Am. Ceram. Soc. 80, 2967 (1997).CrossRefGoogle Scholar
10.Rieke, P.C., Marsh, B.D., Wood, L.L., Tarasevich, B.J., Liu, J., Song, L., and Fryxell, G.E., Langmuir 11, 318 (1995).CrossRefGoogle Scholar
11.Tarasevich, B.J., Rieke, P.C., and Liu, J., Chem. Mater. 8, 292 (1996).CrossRefGoogle Scholar
12.Xia, Y. and Whitesides, G.M., Angew. Chem. Int. Ed. 37, 550 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
13.Kumar, A., Biebuyck, H.A., and Whitesides, G.M., Langmuir 10, 1498 (1994).CrossRefGoogle Scholar
14.Xia, Y., Zhao, X-M., and Whitesides, G.M., Microelectronic Eng. 32, 255 (1996).CrossRefGoogle Scholar
15.Wilbur, J.L., Kumar, A., Kim, E., and Whitesides, G.M., Adv. Mater. 6, 600 (1994).CrossRefGoogle Scholar
16.Kumar, A., Abbot, N.L., Kim, E., Biebuyck, H.A., and Whitesides, G.M., Acc. Chem. Res. 28, 219 (1995).CrossRefGoogle Scholar
17.Xia, Y., Kim, E., and Whitesides, G.M., J. Electrochem. Soc. 143, 1070 (1996).CrossRefGoogle Scholar
18.Xia, Y. and Whitesides, G.M., Langmuir 13, 2059 (1997).CrossRefGoogle Scholar
19.Agarwal, M., De Guire, M.R., and Heuer, A.H., Appl. Phys. Lett. 71, 891 (1997).CrossRefGoogle Scholar
20.Gao, Y., Kim, Y.J., Chambers, S.A., and Bai, G., J. Vac. Sci. Technol., A 15, 332 (1997).CrossRefGoogle Scholar
21.Graat, P.C.J., and Somers, M.A.J., Appl. Surf. Sci. 100/101, 36 (1996).CrossRefGoogle Scholar
22.Shin, H., Agarwal, M., De Guire, M.R., and Heuer, A.H., Acta Mater. 46, 801 (1998).CrossRefGoogle Scholar
23.Shin, H., Wang, Y., Sampathkumaran, U., De Guire, M.R., Heuer, A.H., and Sukenik, C.N., J. Mater. Res. 14, 2116 (1999).CrossRefGoogle Scholar
24.Collins, R.J., Shin, H., De Guire, M.R., Heuer, A.H., and Sukenik, C.N., Appl. Phys. Lett. 69, 860 (1996).CrossRefGoogle Scholar