Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T23:36:07.717Z Has data issue: false hasContentIssue false

Formation of tough interlocking microstructure in ZrB2–SiC-based ultrahigh-temperature ceramics by pressureless sintering

Published online by Cambridge University Press:  31 January 2011

Ji Zou
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Shanghai 200050, China; and Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Guo-Jun Zhang*
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Shanghai 200050, China; and Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Yan-Mei Kan
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Shanghai 200050, China
*
a) Address all correspondence to this author. e-mail: gjzhang@mail.sic.ac.cn
Get access

Abstract

A self-reinforced ultrahigh-temperature ceramic (UHTC) with elongated ZrB2 grains has been successfully densified by pressureless sintering using commercially available ZrB2, SiC, and WC powders as raw materials. Benefiting from the unique interlocking microstructure, this material had improved strength (518 ± 10 MPa) and higher fracture toughness (6.5 ± 0.2 MPa m1/2) compared to ZrB2–SiC ceramics prepared by pressureless sintering. This work provides a new route for tailoring the microstructure and mechanical properties of UHTCs.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Opeka, M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A., and Causey, S.J.: Mechanical, thermal and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 (1999).CrossRefGoogle Scholar
2Monteverde, F. and Bellosi, A.: Microstructure and properties of an HfB2–SiC composite for ultra high temperature applications. Adv. Eng. Mater. 6, 331 (2004).CrossRefGoogle Scholar
3Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A.: Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90, 1347 (2007).CrossRefGoogle Scholar
4Zhu, S., Fahrenholtz, W.G., and Hilmas, G.E.: Enhanced densification and mechanical properties of ZrB2–SiC processed by a preceramic polymer coating route. Scr. Mater. 59, 123 (2008).CrossRefGoogle Scholar
5Silvestroni, L., Sciti, D., and Bellosi, A.: Microstructure and properties of pressureless sintered HfB2-based composites with additions of ZrB2 or HfC. Adv. Eng. Mater. 9, 915 (2007).CrossRefGoogle Scholar
6Silvestroni, L. and Sciti, D.: Microstructure and properties of pressureless sintered ZrC-based materials. J. Mater. Res. 23, 1882 (2008).CrossRefGoogle Scholar
7Lawn, B.: Fracture of Brittle Solids (Cambridge University Press, Cambridge, UK, 1993), pp. 30, 33.CrossRefGoogle Scholar
8Zhang, P., Hu, P., Zhang, X., Han, J., and Meng, S.: Processing and characterization of ZrB2–SiCW ultra-high temperature ceramics. J. Alloys Compd. 472, 358 (2009).CrossRefGoogle Scholar
9Zhang, S.C., Hilmas, G.E., and Fahrenholtz, W.G.: Pressureless sintering of ZrB2–SiC ceramics. J. Am. Ceram. Soc. 91, 26 (2008).CrossRefGoogle Scholar
10Rezaie, A., Fahrenholtz, W.G., and Hilmas, G.E.: Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC. J. Mater. Sci. 42, 2735 (2007).CrossRefGoogle Scholar
11Shen, Z.J., Zhao, Z., Peng, H., and Nygren, M.: Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature 417, 266 (2002).CrossRefGoogle ScholarPubMed
12Chen, I.W. and Rosenflanz, A.: A tough SIAION ceramic based on alpha-Si3N4 with a whisker-like microstructure. Nature 389, 704 (1997).CrossRefGoogle Scholar
13Johnson, W.B., Nagelberg, A.S., and Breval, E.: Kinetics of formation of a platelet-reinforced ceramic composite prepared by the directed reaction of zirconium with boron carbide. J. Am. Ceram. Soc. 74, 2093 (1991).CrossRefGoogle Scholar
14Wu, W.W., Zhang, G.J., Kan, Y.M., and Wang, P.L.: Reactive hot pressing of ZrB2–SiC–ZrC ultra high-temperature ceramics at 1800 °C. J. Am. Ceram. Soc. 89, 2967 (2006).CrossRefGoogle Scholar
15Chaar, T.D., Johnson, W.B., Andersson, C.A., and Schiroky, G.H.: Microstructure and properties of platelet reinforced ceramics formed by the directed reaction of zirconium with boron carbide. Ceram. Eng. Sci. Proc. 10, 599 (1989).Google Scholar
16Zou, J., Zhang, G.J., Kan, Y.M., and Wang, P.L.: Presureless densification of ZrB2–SiC composites with vanadium carbide. Scr. Mater. 59, 309 (2008).CrossRefGoogle Scholar
17Chamberlain, A.L., Fahrenholtz, W.G., and Hilmas, G.E.: Pressureless sintering of zirconium diboride. J. Am. Ceram. Soc. 89, 450 (2006).CrossRefGoogle Scholar
18Freiman, S.W.: Fracture Mechanics of Ceramics, 6th ed. (Plenum Press, New York, 1983), pp. 27, 45.Google Scholar
19Fahrenholtz, W.G., Hilmas, G.E., Zhang, S.C., and Zhu, S.: Pressureless sintering of zirconium diboride: Particle size and additive effects. J. Am. Ceram. Soc. 91, 1398 (2008).CrossRefGoogle Scholar
20Zhang, S.C., Hilmas, G.E., and Fahrenholtz, W.G.: Pressureless densification of zirconium diboride with boron carbide additions. J. Am. Ceram. Soc. 89, 1544 (2006).CrossRefGoogle Scholar
21Post, B., Glase, F.W., and Moskowitz, D.: Transition metal borides. Acta Metall. 2, 20 (1954).CrossRefGoogle Scholar
22Phase Diagrams for Ceramists, Vol. X, edited by McHale, A.E. (American Ceramic Society, Westerville, OH, 1994), Fig. 8963.Google Scholar
23Zhang, S.C., Hilmas, G.E., and Fahrenholtz, W.G.: Zirconium carbide –tungsten cermets prepared by in situ reaction sintering. J. Am. Ceram. Soc. 90, 1930 (2007).CrossRefGoogle Scholar
24Zhang, G.J., Wu, W.W., Kan, Y.M., and Wang, P.L.: Ultra-high temperature ceramics (UHTCs) via reactive sintering. Key Eng. Mater. 336, 1159 (2007).CrossRefGoogle Scholar
25Mishra, S.K. and Pathak, L.C.: Effect of carbon and titanium carbide on sintering behaviour of zirconium diboride. J. Alloys Compd. 465, 547 (2008).CrossRefGoogle Scholar