Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T02:33:19.408Z Has data issue: false hasContentIssue false

Formation of ultrafine eutectic-like microstructures of various rare earth oxide-Al2O3 systems by use of amorphous phases

Published online by Cambridge University Press:  31 January 2011

Yohei Harada
Affiliation:
Graduate School of Engineering, Chiba University, Inage-ku, Chiba 263-8522, Japan
Naofumi Uekawa
Affiliation:
Graduate School of Engineering, Chiba University, Inage-ku, Chiba 263-8522, Japan
Takashi Kojima
Affiliation:
Graduate School of Engineering, Chiba University, Inage-ku, Chiba 263-8522, Japan
Kazuyuki Kakegawa*
Affiliation:
Graduate School of Engineering, Chiba University, Inage-ku, Chiba 263-8522, Japan
*
a)Address all correspondence to this author. e-mail: kake@faculty.chiba-u.jp
Get access

Abstract

Ultrafine eutectic-like microstructures of various rare earth (RE) oxide-Al2O3 systems were formed by use of amorphous phases. This new method uses a low migration rate in the amorphous phases. Mixtures of RE oxide (RE: Yb, Dy, Er, Ho, Gd, Sm, Eu) and Al2O3 powders with the eutectic compositions were melted and quenched rapidly to form the amorphous phases. A heat treatment of the amorphous phases of various eutectic systems at 1000 and 1300 °C, for 30 min, formed RE aluminum garnet (RE3Al5O12)/Al2O3 phases or RE aluminum perovskite (REAlO3)/Al2O3 phases. Scanning electron microscopy observation of these materials heat-treated at 1300 °C showed eutectic-like microstructures, in which crystals of eutectic component were entangled with each other. Furthermore, the microstructures were much finer than those of materials generally prepared from eutectic melts. In this study, it was confirmed that this method is useful for the formation of ultrafine eutectic-like microstructures for many eutectic systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., Kohtoku, Y.: A ductile ceramic eutectic composite with high strength at 1873 K. Nature 389, 49 1997CrossRefGoogle Scholar
2Viechnicki, D., Schmid, F.: Eutectic solidification in the system Al2O3/Y3Al5O12. J. Mater. Sci. 4, 84 1969CrossRefGoogle Scholar
3Kennard, F.L., Bradt, R.C., Stubican, V.S.: Mechanical properties of the directionally solidified MgO–MgAl2O4 eutectic. J. Am. Ceram. Soc. 59, 160 1976CrossRefGoogle Scholar
4Waku, Y., Ohtsubo, H., Nakagawa, N., Kohtoku, Y.: Sapphire matrix composites reinforced with single crystal YAG phases. J. Mater. Sci. 31, 4663 1996CrossRefGoogle Scholar
5Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., Kohtoku, Y.: High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. J. Mater. Sci. 33, 1217 1998CrossRefGoogle Scholar
6Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., Kohtoku, Y.: The creep and thermal stability characteristics of a unidirectionally solidified Al2O3/YAG eutectic composite. J. Mater. Sci. 33, 4943 1998CrossRefGoogle Scholar
7Sayir, A., Farmer, S.C.: The effect of the microstructure on mechanical properties of directionally solidified Al2O3/ZrO2(Y2O3) eutectic. Acta Mater. 48, 4691 2000CrossRefGoogle Scholar
8Waku, Y., Sakuma, T.: Dislocation mechanism of deformation and strength of Al2O3–YAG single crystal composites at high temperatures above 1500 °C. J. Eur. Ceram. Soc. 20, 1453 2000CrossRefGoogle Scholar
9Ochiai, S., Ueda, T., Sato, K., Hojo, M., Waku, Y., Nakagawa, N., Sakata, S., Mitani, A., Takahashi, T.: Deformation and fracture behavior of an Al2O3/YAG composite from room temperature to 2023 K. Compos. Sci. Technol. 61, 2117 2001CrossRefGoogle Scholar
10Pastor, J.Y., Poza, P., Llorca, J., Peña, J.I., Merino, R.I., Orera, V.M.: Mechanical properties of directionally solidified Al2O3–ZrO2(Y2O3) eutectics. Mater. Sci. Eng., A 308, 241 2001CrossRefGoogle Scholar
11Llorca, J., Pastor, J.Y., Poza, P., Peña, J.I., Francisco, I., Larrea, A., Orera, V.M.: Influence of the Y2O3 content and temperature on the mechanical properties of melt-grown Al2O3–ZrO2 eutectics. J. Am. Ceram. Soc. 87, 633 2004CrossRefGoogle Scholar
12Yang, J.M., Jeng, S.M., Chang, S.: Fracture behavior of directionally solidified Y3Al5O12/Al2O3 eutectic fiber. J. Am. Ceram. Soc. 79, 1218 1996CrossRefGoogle Scholar
13Nakagawa, N., Ohtsubo, H., Waku, Y., Yugami, H.: Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics. J. Eur. Ceram. Soc. 25, 1285 2005CrossRefGoogle Scholar
14Lee, J.H., Yoshikawa, A., Fukuda, T.: Growth of MgAl2O4/MgO eutectic crystals by the micro-pulling-down method and its characterization. J. Eur. Ceram. Soc. 25, 1351 2005CrossRefGoogle Scholar
15Epelbaum, B.M., Yoshikawa, A., Shimamura, K., Fukuda, T., Suzuki, K., Waku, Y.: Microstructure of Al2O3/Y3Al5O12 eutectic fibers grown by μ-PD method. J. Cryst. Growth 198/199, 471 1999CrossRefGoogle Scholar
16Calderon-Moreno, J.M., Yoshimura, M.: Nanocomposites from melt in the system Al2O3–YAG–ZrO2. Scr. Mater. 44, 2153 2001CrossRefGoogle Scholar
17Larrea, A., de Fuente, G.F. la, Merino, R.I., Orera, V.M.: ZrO2–Al2O3 eutectic plates produced by laser zone melting. J. Eur. Ceram. Soc. 22, 191 2002CrossRefGoogle Scholar
18Llorca, J., Orera, V.M.: Directionally solidified eutectic ceramic oxides. Prog. Mater. Sci. 51, 711 2006CrossRefGoogle Scholar
19Bergeron, C.G., Risbud, S.H.: Introduction to Phase Equilibria in Ceramics The American Ceramic Society Inc., Columbus, OH 1984 25–28Google Scholar
20Weber, J.K.R., Abadie, J.G., Hixson, A.D., Nordine, P.C., Jerman, G.A.: Glass formation and polyamorphism in rare-earth oxide-aluminum oxide compositions. J. Am. Ceram. Soc. 83, 1868 2000CrossRefGoogle Scholar
21Rosenflanz, A., Frey, M., Endres, B., Anderson, T., Richards, E., Schardt, C.: Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature 430, 761 2004CrossRefGoogle ScholarPubMed
22Lee, J.H., Yoshikawa, A., Durbin, S.D., Yoon, D.H., Fukuda, T., Waku, Y.: Microstructure of Al2O3/ZrO2 eutectic fibers grown by the micro-pulling down method. J. Cryst. Growth 222, 791 2001CrossRefGoogle Scholar
23Lee, J.H., Yoshikawa, A., Kaiden, H., Lebbou, K., Fukuda, T., Yoon, D.H., Waku, Y.: Microstructure of Y2O3 doped Al2O3/ZrO2 eutectic fibers grown by the micro-pulling-down method. J. Cryst. Growth 231, 179 2001CrossRefGoogle Scholar
24Han, Y.H., Nagata, M., Uekawa, N., Kakegawa, K.: Eutectic Al2O3–GdAlO3 composite consolidated by combined rapid quenching and spark plasma sintering technique. Br. Ceram. Trans. 103, 219 2004CrossRefGoogle Scholar
25Harada, Y., Uekawa, N., Kojima, T., Kakegawa, K.: Fabrication of Y3Al5O12–Al2O3 eutectic materials having ultra fine microstructure. J. Eur. Ceram. Soc. 28, 235 2008CrossRefGoogle Scholar
26Wu, P., Pelton, A.D.: Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems. J. Alloys Compd. 179, 259 1992CrossRefGoogle Scholar
27Mizuno, M., Yamada, T., Noguchi, T.: Phase diagram of the system Al2O3–Sm2O3 at high temperatures. Yogyo-Kyokai-Shi 85, 374 1977CrossRefGoogle Scholar
28Su, H., Zhang, J., Cui, C., Liu, L., Fu, H.: Rapid solidification behaviour of Al2O3/Y3Al5O12(YAG) binary eutectic ceramic in situ composites. Mater. Sci. Eng., A 479, 380 2008CrossRefGoogle Scholar