Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T03:25:33.789Z Has data issue: false hasContentIssue false

Growth of stable Al–Pd–Mn icosahedral phase

Published online by Cambridge University Press:  31 January 2011

C. Dong
Affiliation:
Laboratoire de Science et Génie des Matériaux Métalliques (CNRS URA 159), Ecole des Mines, Parc de Saurupt, 54042 Nancy, France
J.M. Dubois
Affiliation:
Laboratoire de Science et Génie des Matériaux Métalliques (CNRS URA 159), Ecole des Mines, Parc de Saurupt, 54042 Nancy, France
M. de Boissieu
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Métallurgique (CNRS UA29), ENSEEG, BP75, 38402 Saint-Martin d'Hères, France
M. Boudard
Affiliation:
Institut Laue Langevin, BP156X, 38042 Grenoble, France
C. Janot
Affiliation:
Institut Laue Langevin, BP156X, 38042 Grenoble, France
Get access

Abstract

We have carried out a detailed investigation of the Al71Pd19Mn10 alloy by using a combination of experimental techniques (neutron diffraction, electron diffraction, high resolution electron microscopy, and electron probe microanalysis). This alloy contains only the perfect icosahedral phase. This icosahedral phase is stable from room temperature up to its melting, though a transient cubic metastable phase coexists with it during the heating. It grows directly from liquid without involving any crystalline phase. Its isothermal growths at different temperatures can well be described by the Avrami equation with exponent n = 1.85. Comparisons with the Al–Cu–Fe I phase have also been made. The growth velocity of both I phases is approximately 1 μm/min with ΔT around 10 K, much slower than that of the crystalline phases growing under the same condition. After the sample was maintained at near liquidus temperature for more than 10 h, element losses and Si contamination from the crucible changed the sample composition. In consequence, crystalline phases have formed during the subsequent cooling and made the growth of the icosahedral phase a eutectic reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tsai, A. P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 26, L1505 (1987).CrossRefGoogle Scholar
2.Tsai, A. P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys., 27, L1587 (1988).Google Scholar
3.Bancel, P. A., Phys. Rev. Lett. 62, 2741 (1989).CrossRefGoogle Scholar
4.Dong, C., Dubois, J. M., De Boissieu, M., and Janot, C., J. Phys.: Condensed Matter 2, 6339 (1990).Google Scholar
5.Dubois, J. M., Dong, C., Janot, C., De Boissieu, M., and Audier, M., Troisié;me Colloque D'Expression Française sur les Transitions de Phases, Djerba, Tunisie, March 18–25, 1990, Phase Transition 32, 3 (1991).Google Scholar
6.Audier, M. and Guyot, P., 1989, 3rd Int. Meeting on Quasicrystals, Mexico, edited by Yacaman, J. and Romen, D. (World Scientific, Singapore, 1990), p. 288.Google Scholar
7.Dénoyer, F., Heger, G., Lambert, M., Audier, M., and Guyot, P., J. Physique 51, 651 (1990).Google Scholar
8.Dong, C., Dubois, J. M., De Boissieu, M., and Janot, C., J. Phys.: Condensed Matter 3, 1665 (1991).Google Scholar
9.Audier, M., Launois, P., Dénoyer, F., Dong, C., and Dubois, J. M., J. Micr. Spectr. Elec. 1, 417 (1990).Google Scholar
10.Launois, P., Audier, M., Dénoyer, F., Dong, C., Dubois, J. M., and Lambert, M., Europhys. Lett. 13, 629 (1990).CrossRefGoogle Scholar
11.Dong, C., Dubois, J. M., Kang, S. S., and Audier, M., Philos. Mag. (in press).Google Scholar
12.Tsai, A. P., Inoue, A., Yokoyama, Y., and Masumoto, T., Mater. Trans. Jpn. Inst. Metals 31, 98 (1990).Google Scholar
13.Beeli, C., Nissen, H. U., and Robadey, J., Philos. Mag. Lett. 63, 87 (1991).CrossRefGoogle Scholar
14.Tsai, A. P., Inoue, A., and Masumoto, T., Philos. Mag. Lett. 62, 95 (1990).Google Scholar
15.Boudard, M., De Boissieu, M., Janot, C., Dubois, J. M., and Dong, C., Philos. Mag. Lett., submitted.Google Scholar
16.Cahn, J. W., Shechtman, D., and Gratias, D., J. Mater. Res. 1, 13 (1986).Google Scholar
17.Christian, J. W., in Physical Metallurgy edited by Cahn, R. W. (North-Holland, Amsterdam, 1965), pp. 443537.Google Scholar
18.Dong, C., Chattopadhyay, K., and Kuo, K. H., Scripta Metall. 21, 1307 (1987).Google Scholar
19.Dong, C., Kuo, K. H., and Chattopadhyay, K., Mater. Sci. Forum 22–24, 555 (1987).Google Scholar
20.Egawa, K., Susuki, K., Ichihara, M., and Takeuchi, S., Philos. Mag. B (preprint).Google Scholar
21.Verger-Gaugry, J. L., Number Theory and Phys. 47, 128 (1990).Google Scholar
22.Zhang, H. and Kuo, K. H., Phys. Rev. B 41, 3482 (1990).Google Scholar
23.Elser, V., in Aperiodicity and Order, volume 3, Extended Icosahedral Structures, edited by Jaric, M. V. and Gratias, D. (Academic Press, Inc., Harcourt Brace Jovanovich, 1989), p. 115.Google Scholar
24.Schaefer, R. J., Bendersky, L. A., Shechtman, D., Boettinger, W. J., and Biancaniello, F. S., Metall. Trans. A 17A, 2117 (1986).Google Scholar
25.Miroshnichenko, I. S. and Brekhayra, G. P., Fiz. Met. Metalloved. 29, 664 (1970).Google Scholar
26.Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
27.Eady, J. A., Hogan, L. M., and Dadies, P. G., J. Aust. Inst. Met. 20, 23 (1975).Google Scholar
28.Powell, G. L. F., Colligan, G. A., Surprenant, V. A., and Urquhart, A., Metall. Trans. A 8A, 971 (1977).Google Scholar
29.Toner, J., Phys. Rev. Lett. 64, 930 (1990).Google Scholar