Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T23:24:57.620Z Has data issue: false hasContentIssue false

Hardening mechanisms in irradiated Cu–W alloys

Published online by Cambridge University Press:  18 August 2017

Gowtham Sriram Jawaharram
Affiliation:
Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
Shen J. Dillon*
Affiliation:
Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
Robert S. Averback
Affiliation:
Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
*
a) Address all correspondence to this author. e-mail: sdillon@illinois.edu
Get access

Abstract

This work investigates the relative contributions to strengthening from twinning, solid-solution, precipitation, and irradiation hardening mechanisms in sputtered Cu–W thin films irradiated to different doses. A nanograin solid solution strengthening mechanism with a linear compositional dependence is observed for the as-grown alloys and for the alloy samples irradiated to 0.5 dpa. Solid solution strengthening is the major strengthening mechanism for Cu99.5W0.5 at all irradiation doses. Irradiation induces precipitation in samples with W concentrations greater than or equal to 1% at doses above ≈0.5 dpa. The growth of 1–4 nm precipitates enhances the hardness of these alloys, and the degree of strengthening is determined by the interparticle spacing. While the alloys exhibit steady-state properties after a relatively low dose (≈1 dpa), the different time scales associated with detwinning and damage accumulation in pure Cu lead transients at higher doses (>5 dpa).

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

References

REFERENCES

Chen, J., Lu, L., and Lu, K.: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913 (2006).Google Scholar
Jiang, H., Zhu, Y.T., Butt, D.P., Alexandrov, I.V., and Lowe, T.C.: Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater. Sci. Eng., A 290, 128 (2000).Google Scholar
Sanders, P.G., Eastman, J.A., and Weertman, J.R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019 (1997).CrossRefGoogle Scholar
Wang, Y.M. and Ma, E.: Temperature and strain rate effects on the strength and ductility of nanostructured copper. Appl. Phys. Lett. 83, 3165 (2003).Google Scholar
Özerinç, S., Tai, K., Vo, N.Q., Bellon, P., Averback, S., and King, W.P.: Grain boundary doping strengthens nanocrystalline copper alloys. Scr. Mater. 67, 720 (2012).CrossRefGoogle Scholar
Mula, S., Bahmanpour, H., Mal, S., Kang, P.C., Atwater, M., Jian, W., Scattergood, R.O., and Koch, C.C.: Thermodynamic feasibility of solid solubility extension of Nb in Cu and their thermal stability. Mater. Sci. Eng., A 539, 330 (2012).Google Scholar
Khalajhedayati, A. and Rupert, T.J.: High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu–Zr alloy. JOM 67, 2788 (2015).CrossRefGoogle Scholar
Darling, K.A., Roberts, A.J., Mishin, Y., Mathaudhu, S.N., and Kecskes, L.J.: Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum. J. Alloys Compd. 573, 142 (2013).Google Scholar
Rajgarhia, R.K., Spearot, D.E., and Saxena, A.: Plastic deformation of nanocrystalline copper-antimony alloys. J. Mater. Res. 25, 411 (2010).Google Scholar
Anderoglu, O., Misra, A., Wang, H., and Zhang, X.: Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103, 094322 (2008).Google Scholar
Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., and Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 (2005).Google Scholar
Ma, E., Wang, Y.M., Lu, Q.H., Sui, M.L., Lu, L., and Lu, K.: Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl. Phys. Lett. 85, 4932 (2004).Google Scholar
Zhang, X., Beach, J.A., Wang, M., Bellon, P., and Averback, R.S.: Precipitation kinetics of dilute Cu–W alloys during low-temperature ion irradiation. Acta Mater. 120, 46 (2016).Google Scholar
Arshad, S.N., Lach, T.G., Ivanisenko, J., Setman, D., Bellon, P., Dillon, S.J., and Averback, R.S.: Self-organization of Cu–Ag during controlled severe plastic deformation at high temperatures. J. Mater. Res. 30, 1943 (2015).CrossRefGoogle Scholar
Hosemann, P., Shin, C., and Kiener, D.: Small scale mechanical testing of irradiated materials. J. Mater. Res. 30, 1231 (2017).Google Scholar
Valiev, R.Z. and Alexandrov, I.V.: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002).Google Scholar
Raghu, T., Sundaresan, R., Ramakrishnan, P., and Rama Mohan, T.R.: Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying. Mater. Sci. Eng., A 304–306, 438 (2001).CrossRefGoogle Scholar
Nastasi, M., Saris, F.W., Hung, L.S., and Mayer, J.W.: Stability of amorphous Cu/Ta and Cu/W alloys. J. Appl. Phys. 58, 3052 (1985).Google Scholar
Vo, N.Q., Chee, S.W., Schwen, D., Zhang, X., Bellon, P., and Averback, R.S.: Microstructural stability of nanostructured Cu alloys during high-temperature irradiation. Scr. Mater. 63, 929 (2010).CrossRefGoogle Scholar
Liu, J.C., Li, J., and Mayer, J.W.: Temperature effect on ion-irradiation-induced grain growth in Cu thin films. J. Appl. Phys. 67(5), 2354 (1990).Google Scholar
Tai, K., Averback, R.S., Bellon, P., Vo, N., Ashkenazy, Y., and Dillon, S.J.: Orientation relationship formed during irradiation induced precipitation of W in Cu. J. Nucl. Mater. 454, 126 (2014).Google Scholar
Vüllers, F.T.N. and Spolenak, R.: From solid solutions to fully phase separated interpenetrating networks in sputter deposited “immiscible” W–Cu thin films. Acta Mater. 99, 213 (2015).CrossRefGoogle Scholar
Hosemann, P., Kiener, D., Wang, Y., and Maloy, S.A.: Issues to consider using nano indentation on shallow ion beam irradiated materials. J. Nucl. Mater. 425, 136 (2012).Google Scholar
Tai, K., Averback, R.S., Bellon, P., Ashkenazy, Y., and Stumphy, B.: Temperature dependence of irradiation-induced creep in dilute nanostructured Cu–W alloys. J. Nucl. Mater. 422, 8 (2012).Google Scholar
Tabor, D.: The hardness and strength of metals. J. Inst. Met. 79(7), 1 (1951).Google Scholar
Rupert, T.J., Trenkle, J.C., and Schuh, C.A.: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59, 1619 (2011).Google Scholar
Youssef, K.M., Scattergood, R.O., Murty, K.L., and Koch, C.C.: Ultratough nanocrystalline copper with a narrow grain size distribution. Appl. Phys. Lett. 85, 929 (2004).Google Scholar
Was, G.S.: Fundamentals of Radiation Materials Science (Springer Berlin Heidelberg, New York, USA, 2007).Google Scholar
Yuan, R., Beyerlein, I.J., and Zhou, C.: Coupled crystal orientation-size effects on the strength of nano crystals. Sci. Rep. 6, 1 (2016).Google Scholar
Gelles, D.S.: A. C. E.-10 on Nuclear Technology, and Applications: Effects of Radiation on Materials: 17th International Symposium (ASTM, Philadelphia, Pennsylvania, 1996).Google Scholar
Zhang, Z. and Chen, D.L.: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54, 1321 (2006).Google Scholar
Chen, Y., Li, J., Yu, K.Y., Wang, H., Kirk, M.A., Li, M., and Zhang, X.: In situ studies on radiation tolerance of nanotwinned Cu. Acta Mater. 111, 148 (2016).Google Scholar
Jiang, H., Klemmer, T.J., Barnard, J.A., Doyle, W.D., and Payzant, E.A.: Epitaxial growth of Cu(111) films on Si(110) by magnetron sputtering: Orientation and twin growth. Thin Solid Films 315, 13 (1998).Google Scholar
Chen, Y., Wang, H., Kirk, M.A., Li, M., Wang, J., and Zhang, X.: Radiation induced detwinning in nanotwinned Cu. Scr. Mater. 130, 37 (2017).Google Scholar
Li, N., Wang, J., Wang, Y.Q., Serruys, Y., Nastasi, M., and Misra, A.: Incoherent twin boundary migration induced by ion irradiation in Cu. J. Appl. Phys. 113, 023508 (2013).Google Scholar
Li, N., Hattar, K., and Misra, A.: In situ probing of the evolution of irradiation-induced defects in copper. J. Nucl. Mater. 439, 185 (2013).Google Scholar
Dub, S.N., Lim, Y.Y., and Chaudhri, M.M.: Nanohardness of high purity Cu(111) single crystals: The effect of indenter load and prior plastic sample strain. J. Appl. Phys. 107 (2010).Google Scholar
Supplementary material: File

Jawaharram Supplementary Material

Supplementary Material

Download Jawaharram Supplementary Material(File)
File 303.7 KB