Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T21:25:38.374Z Has data issue: false hasContentIssue false

Heteroepitaxial growth of lanthanum aluminate films derived from mixed metal nitrates

Published online by Cambridge University Press:  31 January 2011

Man Fai Ng
Affiliation:
Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Michael J. Cima
Affiliation:
Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

Epitaxial lanthanum aluminate (LaAlO3) thin films were deposited on single-crystal substrates by pyrolysis of spin-on mixed nitrate precursors. The films are epitaxial without any second phase. TEM micrographs show that all of these films have pores with sizes ranging from 5 to 30 nm. Grain boundaries are not observed. Selected area diffraction shows that the films are single-crystal-like, despite the porosity. All the films are smooth and crack-free. The precursors first decompose into an amorphous mixture. Heterogeneous nucleation occurs on the lattice-matched, single-crystal substrate surface. The epitaxial films grow upward and consume the amorphous regions. The crystallization temperature of LaAlO3 is lower for thin films than for bulk samples due to nucleation on the substrate. The crystallization of LaAlO3 does not exhibit linear growth kinetics. The Johnson–Mehl–Avrami exponent of growth is between 1.4 and 1.5. This deviation from the linear growth model (n = 1) can be attributed to continuous nucleation on the substrate/film interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hwang, D. M., Venkatesan, T., Chang, C. C., Nazar, L., Wu, X. D., Inam, A., and Hegde, M. S., Appl. Phys. Lett. 54 (17), 1702 (1989).CrossRefGoogle Scholar
2.Koren, G., Gupta, A., and Basemen, R. J., Appl. Phys. Lett. 54 (19), 1920 (1989).CrossRefGoogle Scholar
3.Xiong, G. C. and Wang, S. Z., Appl. Phys. Lett. 55 (9), 902 (1989).CrossRefGoogle Scholar
4.Siegal, M. P., Phillips, J. M., van Dover, R. B., Tiefel, T. H., and Marshall, J. H., J. Appl. Phys. 68, 6353 (1990).CrossRefGoogle Scholar
5.Lee, A. E., Platt, C. E., Burch, J. F., Simon, R. W., Goral, J. P., and al-Jassim, M. M., Appl. Phys. Lett. 57 (19), 2019 (1990).CrossRefGoogle Scholar
6.Sader, E., Supercond. Sci. Technol. 6 (7), 547 (1993).CrossRefGoogle Scholar
7.McIntyre, P. C., Cima, M. J., and Ng, M. F., J. Appl. Phys. 68 (8), 4183 (1990).CrossRefGoogle Scholar
8.Braustein, G., Paz-Pujalt, G. R., Mason, M. G., Blanton, T. N., Barnes, C. L., and Margevich, D., J. Appl. Phys. 73 (2), 961 (1994).CrossRefGoogle Scholar
9.Partlow, D. P. and Greggi, J., J. Mater. Res. 2, 595 (1987).CrossRefGoogle Scholar
10.Nashimoto, K., Cima, M. J., McIntyre, P. C., and Rhine, W. E., J. Mater. Res. 10, 2564 (1995).CrossRefGoogle Scholar
11.Endo, H. and Cima, M. J., in Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 325.Google Scholar
12.Chen, C., Ryder, D. F., Jr., and Spurgeon, W. A., J. Am. Ceram. Soc. 72 (8), 1495 (1989).CrossRefGoogle Scholar
13.Ng, M. F. and Cima, M. J., in Mechanism of Thin-Film Evolution, edited by Yalisove, S. M., Thompson, C. V., and Eaglesham, D. J. (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 547.Google Scholar
14.Ng, M. F. and Cima, M. J., in Mechanism of Thin-Film Evolution, edited by Yalisove, S. M., Thompson, C. V., and Eaglesham, D. J. (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 577.Google Scholar
15.Ng, M. F. and Cima, M. J., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 145.Google Scholar
16.Kromann, R., Bilde-Søresnsen, J. B., de Veus, R., Andersen, N. H., Vase, P., and Freltoft, T., J. Appl. Phys. 71, 3419 (1992).CrossRefGoogle Scholar
17.Tuttle, B. A., Headley, T. J., Bunker, B. C., Schwartz, R. W., Zender, T. J., Hernandez, C. L., Goodnow, D. C., Tissot, R. J., Michael, J., and Carim, A. H., J. Mater. Res. 7, 1876 (1992).CrossRefGoogle Scholar
18.van Veen, A., Reader, A. H., Gravensteijn, D. J., and van Gorkum, A. A., Thin Solid Film 241, 206 (1993).CrossRefGoogle Scholar
19.Chang, B. P., Ceramics Processing Research Laboratory, Massachusetts Institute of Technology, unpublished work.Google Scholar
20.Roy, R., Suwa, Y., and Konarneni, S., Science of Ceramic Chemical Processing (Wiley, New York, 1986), p. 247.Google Scholar
21.Vilmin, G., Komarneni, S., and Roy, R., J. Mater. Res. 2, 489 (1987).CrossRefGoogle Scholar
22.Kazakos, A. M., Komarneni, S., and Roy, R., J. Mater. Res. 5, 1095 (1990).CrossRefGoogle Scholar
23.Kwok, C. K. and Desu, S. B., J. Mater. Res. 8, 339 (1993).CrossRefGoogle Scholar
24.McIntyre, P. C., Sc.D. Thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology (1993).Google Scholar
25.Golden, S. J., Lange, F. F., Clarke, D. R., Chang, L. D., and Necker, C. T., Appl. Phys. Lett. 61 (3), 351 (1992).CrossRefGoogle Scholar
26.Olson, G. L. and Roth, J. A., Mater. Sci. Rep. 3, 1 (1988).CrossRefGoogle Scholar
27.Miller, K. T., Chan, C. J., Cain, M. G., and Lange, F. F., J. Mater. Res. 8, 169 (1993).CrossRefGoogle Scholar
28.Parker, M. A., Hylton, T. L., Coffey, K. R., and Howard, J. K., in Evolution of Surface and Thin Film Microstructure, edited by Atwater, H. A., Chason, E. H., Grabow, M. L., and Lagally, M. G. (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1993), p. 625.Google Scholar
29.Thompson, C. V., Annu. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
30.Fay, H. and Brandle, C. D., Crystal Growth, Supplement to Phys. and Chem. Solids, 51 (1966).Google Scholar
31.Wu, P. and Pelton, A. D., J. Alloys Compounds 179, 259 (1992).CrossRefGoogle Scholar
32.Cahn, J. W., Cata Metall. 8, 554 (1960).Google Scholar
33.Cahn, J. W., Crystal Growth, Supplement to Phys. and Chem. Solids, 681 (1966).Google Scholar
34.Jackson, K. A., Prog. Solid State Chem. 4, 53 (1967).CrossRefGoogle Scholar
35.Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Reading, MA, 1978).Google Scholar
36.Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
37.Johnson, W. A. and Mehl, R. F., Trans. AIME 135, 416 (1939).Google Scholar
38.Hong, Q. Z., Zhu, J. G., Mayer, J. W., Xia, W., and Lau, S. S., J. Appl. Phys. 71 (4), 1768 (1992).CrossRefGoogle Scholar
39.Lee, C., Haynes, T. E., and Jones, K. S., Appl. Phys. Lett. 62 (5), 501 (1993).CrossRefGoogle Scholar
40.Paine, D. C., Evans, N. D., and Stoffel, N. G., J. Appl. Phys. 70 (8), 4278 (1991).CrossRefGoogle Scholar