Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T23:29:36.082Z Has data issue: false hasContentIssue false

Imidazole catalyzed silica synthesis: Progress toward understanding the role of histidine in (bio)silicification

Published online by Cambridge University Press:  31 January 2011

Siddharth V. Patwardhan
Affiliation:
Biomolecular and Materials Interface Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
Vadim V. Annenkov
Affiliation:
Limnological Institute of Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia
Carole C. Perry*
Affiliation:
Biomolecular and Materials Interface Research Group, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
*
a) Address all correspondence to this author. e-mail: Carole.Perry@ntu.ac.uk
Get access

Abstract

Histidine is an amino acid present in proteins involved in biosilica formation and often found in peptides identified during phage display studies but its role(s) and the extent of its involvement in the silica precipitation process is not fully understood. In this contribution we describe results from an in vitro silicification study conducted using poly-histidine (P-His) and a series of different molecular weight synthetic polymers containing the imidazole functionality (polyvinylimidazole, PVI) for comparison. We show that the presence of imidazole from PVI or P-His is able to catalyze silicic acid condensation; the effect being greater for P-His. The catalytic mechanism is proposed to involve the dual features of the imidazole group—its ability to form hydrogen bonds with silicic acid and electrostatic attraction toward oligomeric silicic acid species.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shimizu, K., Cha, J., Stucky, G.D., and Morse, D.E.: Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proc. Nat. Acad. Sci. U.S.A. 95, 6234 (1998).CrossRefGoogle ScholarPubMed
2.Krasko, A., Lorenz, B., Batel, R., Schroeder, H.C., Müller, I.M., and Müller, W.E.G.: Expression of silicatein and collagen genes in the marine sponge suberites domuncula is controlled by silica and myotrophin. Eur. J. Biochem. 267, 4878 (2000).Google Scholar
3.Zhou, Y., Shimizu, K., Cha, J.N., Stucky, G.D., and Morse, D.E.: Efficient catalysist of polysiloxane synthesis by silicatein-alpha requires specific hydroxy and imidazole functionalities. Angew. Chem. Int. Ed. 38, 779 (1999).3.0.CO;2-#>CrossRefGoogle Scholar
4.Cha, J.N., Shimizu, K., Zhou, Y., Christiansen, S.C., Chmelka, B.F., Stucky, G.D., and Morse, D.E.: Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Nat. Acad. Sci. U.S.A. 96, 361 (1999).CrossRefGoogle ScholarPubMed
5.Roth, K.M., Zhou, Y., Yang, W., and Morse, D.E.: Bifunctional small molecules are biomimetic catalyst for silica synthesis at neutral pH. J. Am. Chem. Soc. 127, 325 (2005).Google Scholar
6.Croce, G., Franche, A., Milanesio, M., Marchese, L., Causa, M., Viterbo, D., Barbaglia, A., Bolis, V., Bavestrello, G., Cerrano, C., Benatti, U., Pozzolini, M., Giovine, M., and Amenitsh, H.: Structural characterisation of siliceous spicules from marine sponges. Biophys. J. 86, 526 (2004).CrossRefGoogle ScholarPubMed
7.Naik, R.R., Brott, L.L., Clarson, S.J., and Stone, M.O.: Silica-precipitating peptides isolated from a combinatorial phage display peptide library., J. Nanosci. Nanotechnol. 2, 95 (2002).CrossRefGoogle ScholarPubMed
8.Eteshola, E., Brillson, L.J., and Lee, S.C.: Selection and characteristics of peptides that bind thermally grown silicon dioxide films. Biomol. Eng. 22, 201 (2005).CrossRefGoogle ScholarPubMed
9.Patwardhan, S.V. and Clarson, S.J.: Silicification and biosilicification: Part 6. Poly-L-Histidine mediated synthesis of silica at neutral pH.. J. Inorg. Organomet. Polym. 13, 49 (2003).CrossRefGoogle Scholar
10.Cha, J.N., Stucky, G.D., Morse, D.E., and Deming, T.J.: Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403, 289 (2000).CrossRefGoogle ScholarPubMed
11.Tahir, M.N., Théato, P., Müller, W.E.G., Schröder, H.C., Janshoff, A., Zhang, J., Huth, J., and Tremel, W.: Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. Chem. Commun. 2848, (2004).CrossRefGoogle ScholarPubMed
12.Tahir, M.N., Théato, P., Müller, W.E.G., Schröder, H.C., Borejko, A., Faiss, S., Janshoff, A., Huth, J., and Tremel, W.: Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem. Commun. 5533, (2005).Google Scholar
13.Tahir, M.N., Eberhardt, M., Therese, H.A., Kolb, U., Théato, P., Muüller, W.E.G., Schröder, H.C., and Tremel, W.: From single molecules to nanoscopically structured functional materials: Au nanocrystal growth on TiO2 nanowires controlled by surface-bound silicatein. Angew. Chem. Int. Ed. 45, 4803 (2006).CrossRefGoogle ScholarPubMed
14.Sumerel, J.L., Yang, W.J., Kisailus, D., Weaver, J.C., Choi, J.H., and Morse, D.E.: Biocatalytically templated synthesis of titanium dioxide. Chem. Mater. 15, 4804 (2003).CrossRefGoogle Scholar
15.Kisailus, D., Choi, J.H., Weaver, J.C., Yang, W.J., and Morse, D.E.: Enzymatic synthesis and nanostructural control of gallium oxide at low temperature. Adv. Mater. 17, 314 (2005).CrossRefGoogle Scholar
16. Marvin 5.0.0, 40 ChemAxon (http://www.chemaxon.com).Google Scholar
17.Mazyar, N.L., Annenkov, V.V., Kruglova, V.A., Anabev, S.M., Danilovtseva, E.N., Rokhin, A.V., and Zinchenko, S.V.: Acid-base properties of poly(1-vinlyazoles) in aqueous solution. Russ. Chem. Bull. Int. Ed. 49, 2013 (2000).CrossRefGoogle Scholar
18.Cabot, B., Deratani, A., and Foissy, A.: Adsorption of poly (vinylimidazoles) onto silica surfaces. Colloids Surf., A 139, 287 (1998).CrossRefGoogle Scholar
19.Roques-Carmes, T., Membrey, F., Kaisheva, M., Filiâtre, C., and Foissy, A.: Reflectometric study of the adsorption of poly(vinyl imidazole) on a gold electrode, effects of pH, and applied potential., J. Colloid Interface Sci. 299, 504 (2006).CrossRefGoogle Scholar
20.Popping, B., Deratani, A., Sebille, B., Desbois, N., Lamarche, J.M., and Foissy, A.: The effects of electrical charge on the adsorption of a weak cationic polyelectrolyte onto silica, silicon carbide and calcium fluoride. Colloids Surf., A 64, 125 (1992).Google Scholar
21.Annenkov, V.V., Danilovtseva, E.N., Likhoshway, Y.V., Patwardhan, S.V., and Perry, C.C.: Controlled stabilization of silicic acid below pH 9 using poly(1-vinylimidazole)., J. Mater. Chem. 18, 553 (2008).CrossRefGoogle Scholar
22.Eskin, V.E., Magarik, S.Y., Zhuraev, U.B., and Rudkovskaya, G.D.: Light-scattering, viscosity and dynamic Birefringence of polynormal-vinylimidazole solutions. Vysokomolekulyarnye Soedineniya Seriya A 20, 2219 (1978).Google Scholar
23.Iler, R.K.: The Chemistry of Silica (John Wiley & Sons, New York, 1979).Google Scholar
24.Belton, D., Paine, G., Patwardhan, S.V., and Perry, C.C.: Towards and understanding of (bio)silicification: The role of amino acids and lysine oligomers in silicification., J. Mater. Chem. 14, 2231 (2004).Google Scholar
25.Harrison, C.C. and Loton, N.: Novel routes to designer silicas: Studies of the decomposition of (M+)2[Si(C6H4O2)3.xH2O]. Importance of M+ identity to the kinetics of oligomerization and the structural characteristics of silica produced. J. Chem. Soc., Faraday Trans. 91, 4287 (1995).Google Scholar
26.Brunauer, S., Emmett, P.H., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).Google Scholar
27.Barrett, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
28.Belton, D., Patwardhan, S.V., and Perry, C.C.: Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. Chem. Commun. 3475 (2005).CrossRefGoogle ScholarPubMed
29.Belton, D., Patwardhan, S.V., and Perry, C.C.: Spermine, spermidine and their analogues generate tailored silicas. J. Mater. Chem. 15, 4629 (2005).CrossRefGoogle Scholar
30.Böhmer, M.R., Heesterbeek, W.H.A., Deratani, A., and Renard, E.: Adsorption of partially quarternised poly(vinyl imidazoles) onto SiO2 and Y2O3. Colloids Surf., A 99, 53 (1995).CrossRefGoogle Scholar
31.Ghiotti, G., Garrone, E., and Boccuzzi, F.: Infrared study of physical adsorption. 2. NO on silica aerosil surfaces. J. Phys. Chem. 91, 5640 (1987).CrossRefGoogle Scholar
32.Annenkov, V.V., Danilovtseva, E.N., Filina, E.A., and Likhoshway, Y.V.: Interaction of silicic acid with poly(1-vinylimidazole). J. Polym. Sci., Part A: Polym. Chem. 44, 820 (2006).CrossRefGoogle Scholar