Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T02:32:18.840Z Has data issue: false hasContentIssue false

Improved wear properties of high energy ion-implanted polycarbonate

Published online by Cambridge University Press:  03 March 2011

G.R. Rao
Affiliation:
Oak Ridge National Laboratory, Bldg. 5500, M.S. 6376, Oak Ridge, Tennessee 37831–6376
E.H. Lee
Affiliation:
Oak Ridge National Laboratory, Bldg. 5500, M.S. 6376, Oak Ridge, Tennessee 37831–6376
R. Bhattacharya
Affiliation:
UES, Inc., 4401, Dayton-Xenia Road, Dayton, Ohio 45432
A.W. McCormick
Affiliation:
UES, Inc., 4401, Dayton-Xenia Road, Dayton, Ohio 45432
Get access

Abstract

Polycarbonate (LexanTM) (PC) was implanted with 2 MeV B+ and O+ ions separately to fluences of 5 × 1017, 1 × 1018, and 5 × 1018 ions/m2, and characterized for changes in surface hardness and tribological properties. Results of tests showed that hardness values of all implanted specimens increased over those of the unirradiated material, and the O+ implantation was more effective in improving hardness for a given fluence than the B+ implantation. Reciprocating sliding wear tests using a nylon ball counterface yielded significant improvements for all implanted specimens except for the 5 × 1017 ions/m2 B+-implanted PC. Wear tests conducted with a 52100 steel ball yielded significant improvements for the highest fluence of 5 × 1018 ions/m2 for both ions, but not for the two lower fluences. The improvements in properties were related to Linear Energy Transfer (LET) mechanisms, where it was shown that the O+ implantation caused greater ionization, thereby greater cross-linking at the surface corresponding to much better improvements in properties. The results were also compared with a previous study on PC using 200 keV B+ ions. The present study indicates that high energy ion irradiation produces thicker, more cross-linked, harder, and more wear-resistant surfaces on polymers and thereby improves properties to a greater extent and more efficiently than lower energy ion implantation.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Venkatesan, T., Calcagno, L., Elman, B. S., and Foti, G., in Ion Beam Modification ofInsulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier, New York, 1987), pp. 301379.Google Scholar
2Lee, E. H., Lewis, M. B., Blau, P. J., and Mansur, L. K., J. Mater. Res. 6, 610 (1991).CrossRefGoogle Scholar
3Lee, E. H., Rao, G. R., and Mansur, L. K., J. Mater. Res. 7, 1900 (1992).CrossRefGoogle Scholar
4Rao, G. R., Lee, E. H., and Mansur, L. K., Wear 162–164, 739747 (1993).CrossRefGoogle Scholar
5Oliver, W. C., Mater. Res. Bull. XI, 15 (1986).CrossRefGoogle Scholar
6Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
7Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
8Lee, E. H., Lee, Y., Oliver, W. C., and Mansur, L. K., J. Mater. Res. 8, 377 (1993).CrossRefGoogle Scholar
9Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, Oxford, 1985), Vol. 1.Google Scholar
10Brown, W. L., Radiat. Eft. 98, 115 (1986).CrossRefGoogle Scholar
11Lee, E. H., Rao, G. R., Lewis, M. B., and Mansur, L. K., J. Mater. Res. 9, 1043 (1994).CrossRefGoogle Scholar
12Lewis, M. B. and Lee, E. H., Nucl. Instrum. Methods B61, 457 (1991).CrossRefGoogle Scholar
13Lee, E. H., Rao, G. R., Lewis, M. B., and Mansur, L. K., Nucl. Instrum. Methods B74, 326 (1993).CrossRefGoogle Scholar
14Lee, E. H., Hembree, D. M. Jr., Rao, G. R., and Mansur, L. K., Phys. Rev. B 48, 15540 (1993).CrossRefGoogle Scholar
15Reichmanis, E., Frank, C. W., O'Donnell, J. H., and Hill, D. J. T., in Irradiation of Polymeric Materials, ACS Symposium Series 527 (American Chemical Society, Washington, DC, 1993), pp. 18.CrossRefGoogle Scholar
16Dowson, D., Godet, M., and Taylor, CM., Wear of Non-Metallic Materials (Mechanical Engineering Publications, London, 1976).Google Scholar
17Briscoe, B., Tribology Int. 14, 231 (1981).CrossRefGoogle Scholar
18Lee, L-H., Polymer Wear and Its Control, ACS Symposium Series 287, edited by Lee, L-H. (American Chemical Society, Washington, DC, 1981), pp. 2738.CrossRefGoogle Scholar
19Czichos, H., Wear 88, 2743 (1983).CrossRefGoogle Scholar
20Santner, E. and Czichos, H., Tribology Int. 22, 103109 (1989).CrossRefGoogle Scholar
21Dowson, D., Challen, J. M., Holmes, K., and Atkinson, J. R., in Wear of Non-Metallic Materials, edited by Dowson, D., Godet, M., and Taylor, C. M. (Mechanical Engineering Publications, London, 1976), pp. 99102.Google Scholar
22Rao, G. R., Lee, E. H., and Mansur, L. K., Wear 174, 103 (1994).CrossRefGoogle Scholar
23Rao, G. R., Lee, E. H., Yao, X., and Brown, I. G., unpublished research.Google Scholar