Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T01:04:54.795Z Has data issue: false hasContentIssue false

Improvement on the degradation of microwave sintered ZnO varistors by postannealing

Published online by Cambridge University Press:  31 January 2011

Chang-Shun Chen
Affiliation:
Department of Mechanical Engineering, HWA-HSIA College of Technology and Commerce, Taipei 235, Taiwan, Republic of China
Cheng-Tzu Kuo
Affiliation:
Institute of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan, Republic of China
I-Nan Lin
Affiliation:
Materials Science Center, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China
Get access

Abstract

The microwave sintering process not only densified the ZnO materials in a higher rate, but also resulted in significantly better varistor characteristics. Large nonlinear coefficient and low leakage current density were attained by cooling the samples under a rate of 80 °C/min after sintering, followed by 600 °C postannealing for 60 min under oxygen atmosphere. Inappropriate annealing deteriorated the varistor characteristics that can either be attributed to the insufficient reoxidation along grain boundaries when annealed in N2 (or air) or loss of Zn species in these regions when annealed at 750 °C (900 °C). By contrast, the degradation behavior of these materials can be improved by the annealing process regardless of the annealing atmosphere or temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Matsuoka, M., Jpn. J. Appl. Phys. 10, 736 (1972).CrossRefGoogle Scholar
2.Levinson, L. M. and Philipp, H. R., Am. Ceram. Soc. Bull. 65, 639 (1986).Google Scholar
3.Gupta, T. K., J. Am. Ceram. Soc. 73, 1817 (1990).CrossRefGoogle Scholar
4.Eda, K., J. Appl. Phys. 49, 2964 (1978).CrossRefGoogle Scholar
5.Emtage, P. R., J. Appl. Phys. 48, 4372 (1977).CrossRefGoogle Scholar
6.Raghu, N. and Kutty, T. R. N., Appl. Phys. Lett. 60, 100 (1992).CrossRefGoogle Scholar
7.Olsson, E., Dunlop, G., and Osterlund, R., J. Am. Ceram. Soc. 76, 65 (1993).CrossRefGoogle Scholar
8.Wu, J. M. and Shyu, J. J., J. Mater. Sci. 24, 1881 (1989).CrossRefGoogle Scholar
9.Philipp, H. R. and Livinson, L. M., in Advances in Ceramics, edited by Yan, M. F. and Heuer, A. H. (American Ceramic Society, Westerville, OH, 1983), Vol. 7, p. 30.Google Scholar
10.Sonder, E., Austin, M. M., and Kinser, D. L., J. Appl. Phys. 54, 3566 (1983).CrossRefGoogle Scholar
11.Gupta, T. K. and Carlson, G. W., J. Mater. Sci. 20, 3487 (1985).CrossRefGoogle Scholar
12.Gupta, T. K. and Carlson, G. W., J. Appl. Phys. 53, 7401 (1982).CrossRefGoogle Scholar
13.Iga, A., Matsuoka, M., and Masuyama, T., Jpn. J. Appl. Phys. 15, 1847 (1976).CrossRefGoogle Scholar
14.Gupta, T. K. and Miller, A. C., J. Mater. Res. 3, 745 (1988).CrossRefGoogle Scholar
15.Eda, K., in Ceramic Transactions, edited by Levinson, L. M. (American Ceramic Society, Westerville, OH, 1989), Vol. 3, p. 10.Google Scholar
16.Iga, A., Matsuoka, M., and Masuyama, T., Jpn. J. Appl. Phys. 15, 1161 (1976).CrossRefGoogle Scholar
17.Shohata, N. and Yoshida, J., Jpn. J. Appl. Phys. 16, 2299 (1977).CrossRefGoogle Scholar
18.Inada, M., Jpn. J. Appl. Phys. 18, 1439 (1979).CrossRefGoogle Scholar
19.Eda, K., Iga, A., and Matsuoka, M., J. Appl. Phys. 51, 2678 (1980).CrossRefGoogle Scholar
20.Sutton, W. H., Bull. Am. Ceram. Soc. 68, 376 (1989).Google Scholar
21.Janney, M. A., Calhoum, C. L., and Kimery, H. D., J. Am. Ceram. Soc. 75, 341 (1992).CrossRefGoogle Scholar
22.Chen, C-S., Kuo, C-T., and Lin, I-N., Jpn. J. Appl. Phys. 35, 4696 (1996).CrossRefGoogle Scholar
23.Mendelson, M. I., J. Am. Ceram. Soc. 52, 443 (1969).CrossRefGoogle Scholar
24.Mukae, K., Tsuda, K., and Nagasawa, I., J. Appl. Phys. 50, 4475 (1979).CrossRefGoogle Scholar
25.Alim, M. A., J. Am. Ceram. Soc. 72, 28 (1989).CrossRefGoogle Scholar
26.Levinson, L. M. and Philipp, H. R., J. Appl. Phys. 47, 1117 (1976).CrossRefGoogle Scholar
27.Shim, Y. and Cordaro, J. F., J. Am. Ceram. Soc. 71, 184 (1988).CrossRefGoogle Scholar