Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T01:59:46.505Z Has data issue: false hasContentIssue false

The influence of an oxidation inhibitor on the elevated temperature fracture resistance of carbon/carbon composites

Published online by Cambridge University Press:  31 January 2011

Arthur J. Lucchesi
Affiliation:
Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4792
Jack C. Hay
Affiliation:
Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4792
Kenneth W. White
Affiliation:
Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4792
Get access

Abstract

This fracture study evaluates the role of a fiber/matrix interfacial glass on the toughening of two different carbon/carbon (C/C) composites. Both composites incorporate a two-dimensional layup of 8-harness satin weave continuous fiber fabric, but differ in several aspects, the most significant of which is the presence of an oxidation inhibitor in one of these. The fracture behavior of both materials was determined in three-point flexure at 20 through 1650 °C. Microstructural studies indicate that the nonhomogeneous distribution of the oxidation inhibitor within the fiber bundles controls the fracture behavior. Electron microprobe results indicate a high concentration of the glass oxidation inhibitor associated with the inter-bundle matrix, while the intra-bundle matrix is composed primarily of carbon. Accordingly, debonding along the inter-bundle interfaces characterizes the oxidation inhibited composite, whereas the nonoxidation inhibited samples debond by individual fibers. Both materials exhibit strongly rising R-curves throughout the test temperature range. At the higher test temperatures the oxidation inhibited C/C shows the greatest cumulative toughening component, although at a lower value of the fracture toughness. This is consistent with the observed increase in the percentage of fibers that experience individual pullout at the higher temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Awashi, S. and Wood, J. L., Ceram. Eng. Sci. Proc. 9 (7–8), 553 (1988).CrossRefGoogle Scholar
2.McKee, D. W., Carbon 25, 551 (1987).CrossRefGoogle Scholar
3.Senet, S., Grimes, R. E., Hunn, D. L., and White, K. W., J. Mater. Sci. (in press).Google Scholar
4.Senet, S., Grimes, R. E., Hunn, D. L., and White, K. W., Carbon 7, 1039 (1991).CrossRefGoogle Scholar
5.Grimes, R. E. and White, K. W., Mechanics and Mechanisms of Damage in Composites and Multi-Materials, ESIS11, edited by Baptiste, D. (Mechanical Engineering Publications, London, 1991), pp. 3344.Google Scholar
6.Ochiai, S. and Peters, P. W. M., J. Mater. Sci. 17, 417 (1982).CrossRefGoogle Scholar
7.Jenkins, M. G., Kobayashi, A. S., White, K. W., and Bradt, R. C., J. Am. Ceram. Soc. 70 (6), 393 (1987).CrossRefGoogle Scholar
8.Fitzer, E., Huttner, W., and Manocha, L. M., Carbon 18, 291 (1980).CrossRefGoogle Scholar
9.Highsmith, A. L. and Reifsnider, K. L., ASTM STP 775, 103 (1982).Google Scholar
10.White, K. W., Bradt, R. C., and Kobayashi, A. S., Proc. 7th Int. Conf. on Fracture, edited by Salama, K., Ravi-Chander, K., Tapun, D. M. R., and Rao, P. Rama (Pergamon Press, Houston, TX, March 1989).Google Scholar
11.Wastein, D., J. Am. Concrete Inst. 43 (9), 1041 (1947).Google Scholar
12.De Vekey, R. C. and Majumdar, R. J., Mag. Concrete Res. 20, 229 (1968).CrossRefGoogle Scholar
13.Greszczuk, L. B., ASTM STP 452, 42 (1969).Google Scholar
14.Lawrence, P., J. Mater. Sci. 7, 1 (1972).CrossRefGoogle Scholar
15.Prewo, K. M. and Brennan, J. J., J. Mater. Sci. 15 (2), 463 (1980).CrossRefGoogle Scholar
16.Becher, P. F. and Wei, G. C., J. Am. Ceram. Soc. 67 (12), C267 (1984).CrossRefGoogle Scholar
17.Becher, P. F., Tiegs, T. N., Ogle, J. C., and Warwick, W. H., Fracture Mechanics of Ceramics, edited by Bradt, R. C.et al, 7, 61 (1986).Google Scholar
18.Wei, G. C. and Becher, P. F., Am. Ceram. Soc. Bull. 3 (2), 298 (1985).Google Scholar
19.Marshall, D. B., Cox, B. N., and Evans, A. G., Acta Metall. 33 (11), 2013 (1985).CrossRefGoogle Scholar
20.Evans, A. G. and Faber, K. T., J. Am. Ceram. Soc. 67 (4), 225 (1984).CrossRefGoogle Scholar
21.Bar-Ziv, S. and Brandon, D. G., Ceram. Eng. Sci. Proc. 9 (7–8), 777 (1988).CrossRefGoogle Scholar
22.Hsueh, C-H., Becher, P. F., and Angelini, P., J. Am. Ceram. Soc. 71 (11), 929 (1988).CrossRefGoogle Scholar
23.Evans, A. G., J. Am. Ceram. Soc. 73 (2), 187 (1990).CrossRefGoogle Scholar
24.Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials (J. Wiley and Sons, New York, 1976).Google Scholar
25.Jenkins, M. G., Kobayashi, A. S., White, K. W., and Bradt, R. C., Int. J. Fract. 34, 281 (1987).CrossRefGoogle Scholar
26.White, K. W. and Guazzone, L-P., J. Am. Ceram. Soc. 74 (9), 2280 (1991).CrossRefGoogle Scholar
27.Chlopek, J. and Blzewicz, S., Carbon 29 (2), 127 (1991).CrossRefGoogle Scholar
28.Jones, L. E. and Thrower, P. A., Carbon 29 (2), 251 (1991).CrossRefGoogle Scholar