Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T02:51:04.794Z Has data issue: false hasContentIssue false

Influence of nanoparticle seeding on the phase formation kinetics of sol-gel-derived Sr0.7Bi2.4Ta2O9 thin films

Published online by Cambridge University Press:  31 January 2011

Yun-Mo Sung
Affiliation:
Department of Materials Science & Engineering, Daejin University, Pochun-koon, Kyunggi-do, 487-711 South Korea
Gopinathan M. Anilkumar
Affiliation:
Advanced Materials Research Center, Daejin University, Pochun-koon, Kyunggi-do, 487-711 South Korea
Seung-Joon Hwang
Affiliation:
Department of Materials Science & Engineering, Daejin University, Pochun-koon, Kyunggi-do, 487-711 South Korea
Get access

Abstract

Sr0.7Bi2.4Ta2O9 (SBT) thin films were deposited on unseeded and SBT nanoparticle (approximately 60–80 nm) seeded Pt/Ti/SiO2Si substrates via sol-gel and spin-coating techniques. The SBT thin films were heated at 600 °C for 1 h to form the fluorite phase, and these fluorite films were further heated at 730–760 °C for fluorite-to-Aurivillius phase transformation. The volume fractions of Aurivillius phase formation obtained through quantitative x-ray diffraction analyses showed highly enhanced kinetics in seeded SBT thin films. Johnson–Mehl–Avrami isothermal kinetic analyses were performed for the characterization of Aurivillius phase formation in unseeded and seeded SBT thin films using the volume fraction values. The Avrami exponents were determined as approximately 1.4 and approximately 0.9 for unseeded and seeded SBT films, respectively, which reveals different nucleation modes. By using Arrhenius-type plots, the activation energy values for the phase transformation of unseeded and seeded SBT thin films were determined to be approximately 264 and approximately 168 kJ/mol, respectively. This gives a key reason for the enhanced kinetics in seeded films. Microstructural analyses on unseeded SBT thin films showed formation of randomly oriented needlelike crystals, while those on seeded ones showed formation of domains comprising directionally grown wormlike crystals. On the basis of the phase formation kinetics and microstructural development, a model representing different nucleation and crystal growth mechanisms for the unseeded and seeded SBT thin films was proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Haertling, G.H., J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
Kingon, A.I. and Streiffer, S.K., Curr. Opin. Solid State Mater. Chem. 4, 39 (1999).CrossRefGoogle Scholar
Budd, K.D., Dey, S.K., and Payne, D.A., Br. Ceram. Proc. 36, 107 (1985).Google Scholar
Haertling, G.H., Ferroelectrics 116, 51 (1991).CrossRefGoogle Scholar
Mihara, T., Watanabe, H., and Araujo, C.A.P., Jpn. J. Appl. Phys. 33, 3996 (1994).CrossRefGoogle Scholar
Araujo, C.A.P., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature. 347, 627 (1995).CrossRefGoogle Scholar
Boyle, T.J., Buchheit, C.D., Rodigruez, M.A., Al-Shareef, H.N., Hernandez, B.A., Schoot, B., Ziller, J.W., J. Mater. Res. 11, 2274 (1996).CrossRefGoogle Scholar
Hayashi, T., Hara, T., and Swayanagi, S., J. Eur. Ceram. Soc. 19, 1497 (1999).CrossRefGoogle Scholar
Kato, K., Zheng, C., Finder, J.M., and Dey, S.K., J. Am. Ceram. Soc. 81, 1869 (1998).CrossRefGoogle Scholar
Zhou, Q.F., Chan, H.L.W., and Choy, L.L., J. Non-Cryst. Solids. 254, 106 (1999).CrossRefGoogle Scholar
Shimakawa, Y., Kubo, Y., Nakagawa, Y., Kamiyama, T., Asano, H., and Izumi, F., Appl. Phy. Lett. 74, 1904 (1999).CrossRefGoogle Scholar
Oishi, Y., Wu, W., Fumoto, K., Okuyama, M., and Hamakawa, Y., Jpn. J. Appl. Phys. 35, 1212 (1996).Google Scholar
Amanuma, K., Hase, T., and Miyasak, Y., Appl. Phys. Lett. 66, 221 (1995).CrossRefGoogle Scholar
Li, T., Zhu, Y., Desu, S.B., Peng, C.H., and Nagata, M., Appl. Phys. Lett. 68, 616 (1996).CrossRefGoogle Scholar
Yi, G. and Sayer, M., Ceram. Bull. 70, 1173 (1991).Google Scholar
Uchiyama, K., Tanaka, K., Shimada, Y., Azuma, M., Otsuki, T., Narayan, S., Joshi, V., Araujo, C.A.P. De, and McMillan, L.D., Integr. Ferroelectr. 36, 119 (2001).CrossRefGoogle Scholar
Watanabe, K., Tanaka, M., Sumitomo, E., Katori, K., Yagi, H., and Scott, J.F., Appl. Phys. Lett. 73, 126 (1998).CrossRefGoogle Scholar
Tanaka, M., Watanabe, K., Katori, K., Yamamoto, H., and Yugi, H., Mater. Res. Bull. 33, 789 (1998).CrossRefGoogle Scholar
Celinska, J., Joshi, V., Narayan, S., McMillan, L.D., and Araujo, C.A.P. De, Integr. Ferroelectr. 30, 1 (2000).CrossRefGoogle Scholar
Uchiyama, K., Arita, K., Shimada, Y., Hayashi, S., Fujii, E., Otsuki, T., Solayappan, N., Joshi, V., and De Araujo, C.A.P., Integr. Ferroelectr. 30, 103 (2000).CrossRefGoogle Scholar
Kumagai, M. and Messing, G.L., J. Am. Ceram. Soc. 68, 500 (1985).CrossRefGoogle Scholar
Kumagai, M. and Messing, G.L., Am. Ceram.Soc. Bull. 73, 88 (1994).Google Scholar
Suwa, Y., Roy, R., and Komarneni, S., J. Am. Ceram. Soc. 68, C-238 (1985).CrossRefGoogle Scholar
Tartaj, J., Moure, C., and Duran, P., Ceram. Int. 27, 741 (2001).CrossRefGoogle Scholar
Wu, A., Salvado, I.M.M., Vilarinho, P.M., and Baptista, J.L., J. Eur. Ceram. Soc. 17, 1443 (1997).CrossRefGoogle Scholar
Narendar, Y. and Messing, G.L., J. Am. Ceram. Soc. 82, 1659 (1999).CrossRefGoogle Scholar
Sung, Y-M., J. Mater. Res. 16, 2039 (2001).CrossRefGoogle Scholar
Kwak, W-C. and Sung, Y-M., J. Mater. Res. 17, 1463 (2002).CrossRefGoogle Scholar
Luk, C.H., Mak, C.L., and Wong, K.H., Thin Solid Films 298, 57 (1997).CrossRefGoogle Scholar
Anilkumar, G.M., Mukundan, P., and Warrier, K.G.K., Chem. Mater. 10, 2217 (1998).CrossRefGoogle Scholar
Hareesh, U.S., Vasudevan, A.K., Mukundan, P., Damodaran, A.D., and Warrier, K.G.K., Mater. Lett. 32, 203 (1997).CrossRefGoogle Scholar
Toraya, H., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 67, C-119 (1984).CrossRefGoogle Scholar
Schmid, H.K., J. Am. Ceram. Soc. 70, 1367 (1987).CrossRefGoogle Scholar
Moon, J., Kerchner, J.A., Lebleu, J., Morrone, A.A., and Adair, J.H., J. Am. Ceram. Soc. 80, 2613 (1997).CrossRefGoogle Scholar
Avrami, M., J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar