Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T01:20:14.348Z Has data issue: false hasContentIssue false

The influence of substrate bias on the morphology and charge capacity of rf-sputtered iridium oxide films

Published online by Cambridge University Press:  31 January 2011

J. D. Klein
Affiliation:
EIC Laboratories, Norwood, Massachusetts 02062
S. L. Clauson
Affiliation:
EIC Laboratories, Norwood, Massachusetts 02062
S. F. Cogan
Affiliation:
EIC Laboratories, Norwood, Massachusetts 02062
Get access

Abstract

Iridium oxide films deposited on Ti-alloy stimulation electrode wires by rf sputtering exhibit markedly different surface morphologies and redox capacities in response to variations in applied substrate bias potential. Films deposited with a −20 volt bias were relatively smooth and featureless whereas those sputtered with a +20 volt bias were comprised of closely packed 1 micron long platelets. Intermediate substrate biases revealed a gradual progression from the smooth surface to one sparsely populated with particles to a morphology comprised of tightly packed platelets. The electrochemical properties of the films are strongly dependent on the substrate bias employed during deposition. As the DC bias was increased from −20 volts to +20 volts the anodic and cathodic charge capacities determined by cyclic voltammetry decreased linearly from 36 to 12 mC/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kotz, R.Neff, H. and Stucki, S.J. Electrochem. Soc. 131, 72 (1984).Google Scholar
2Hackwood, S.Schiavone, L. M.Dautremont-Smith, W. C., and Beni, G.J. Electrochem. Soc. 128, 2569 (1981).Google Scholar
3Kang, K. S. and Shay, J.L.J. Electrochem. Soc. 130, 766 (1983).CrossRefGoogle Scholar
4Sato, Y.Ono, K.Kabayashi, T.Wakabayashi, H. and Yamanaka, H.J. Electrochem. Soc. 134, 570 (1987).Google Scholar
5Lezna, R. O., Kunimatsu, K.Ohtsuka, T. and Sato, N.J. Electrochem. Soc. 134, 3090 (1987).Google Scholar
6Mclntyre, J. D. E.Peck, W. F. and Nakahara, S.J. Electrochem. Soc. 127, 1264 (1980).Google Scholar
7Gottesfeld, S. and Mclntyre, J. D.E.J. Electrochem. Soc. 126, 742 (1979).Google Scholar
8Robblee, L. S.Lefko, J. and Brummer, S. B.J. Electrochem. Soc. 130, 731 (1983).CrossRefGoogle Scholar
9Agnew, W. F.McCreery, D. B.Bullara, L. A.Yuen, T. G. M. and Yeh, Y. S. NINCDS Contract No. N01-NS-0-2319, Quarterly Progress Reports, July and October (1983).Google Scholar
10Robblee, L. S.Mangaudis, M.J.Lasinsky, E. D.Kimball, A.G. and Brummer, S.B.Mat. Res. Soc. Symp. Proc. 55, 303 (1986).Google Scholar
11Hackwood, S.Dautremont-Smith, W. C., and Beni, G.J. Electrochem. Soc. 128, 1212 (1981).Google Scholar
12Rand, D.A.J. and Woods, R.Electroanal. Chem. Interfac. Elec-trochem. 55, 375 (1974).Google Scholar
13Schiavone, L. M.Dautremont-Smith, W. C., Beni, G. and Shay, J. L.Appl. Phys. Lett. 35, 823 (1979).Google Scholar
14Cogan, S. F.Plante, T. D.McFadden, R. S. and Rauh, R. D.Soc. Photo-Opt. Instrum. Eng. 692, 32 (1987).Google Scholar
15Klein, J. D.Clauson, S. L. and Cogan, S. F.accepted for publication in J. Vac. Sci. Technol. A (1989).aGoogle Scholar
16Lince, J.R. and Fleischauer, P.D.J. Mater. Res. 2, 827 (1987).CrossRefGoogle Scholar
17Bertrand, P. A.J. Mater. Res. 4, 180 (1989).Google Scholar
18Stuart, R. V.Vacuum Technology, Thin Films, and Sputtering (Academic Press, Orlando, FL, 1983), p. 105.Google Scholar