Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T01:11:24.907Z Has data issue: false hasContentIssue false

Intracavity metal contacts for organic microlasers

Published online by Cambridge University Press:  18 January 2019

Stefan Meister*
Affiliation:
Dresden Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Dresden 01187, Germany
Robert Brückner
Affiliation:
Dresden Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Dresden 01187, Germany
Markas Sudzius
Affiliation:
Dresden Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Dresden 01187, Germany
Hartmut Fröb
Affiliation:
Dresden Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Dresden 01187, Germany
Karl Leo*
Affiliation:
Dresden Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Dresden 01187, Germany
*
a)Address all correspondence to these authors. e-mail: stefan.meister@iapp.de
Get access

Abstract

The realization of an electrically driven organic solid-state laser is an ambitious but highly desirable goal. Many obstacles need to be solved before a working device can be realized. One of the most challenging tasks is an incorporation of intracavity metal contacts, which, on the one hand, would not substantially degrade optical properties of the whole device and, on the other hand, would ensure sufficient current density to reach lasing. In this paper, we present different contact compositions aiming to realize high-quality intracavity metal contacts. We build a top contact consisting of 0.5 nm of aluminum and 4 nm of silver which has a conductivity of 1.9 × 107 (Ω/m) and is not increasing the optical lasing threshold of an organic microcavity. To get a better understanding of charge carriers influencing the device performance, we have performed a set of measurements, where a hybrid OLED–MC device was excited both optically and electrically at the same time. These experiments suggest that the charge carriers do not degrade electrical performance, at least for current densities in the range of A/cm2. Moreover, our observations suggest that, in some cases, simultaneous optical excitation can contribute to more efficient electrical pumping of the OLED-MC device.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

Tang, C.W. and VanSlyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987).CrossRefGoogle Scholar
Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B.: Light-emitting diodes based on conjugated polymers. Nature 347, 539 (1990).CrossRefGoogle Scholar
Chamberlain, G.A.: Organic solar cells: A review. Sol. Cell. 8, 47 (1983).CrossRefGoogle Scholar
Wöhrle, D. and Meissner, D.: Organic solar cells. Adv. Mater. 3, 129 (1991).CrossRefGoogle Scholar
McCormack, A.J., Tong, S.C., and Cooke, W.D.: Sensitive selective gas chromatography detector based on emission spectrometry of organic compounds. Anal. Chem. 37, 1470 (1965).CrossRefGoogle Scholar
Koezuka, H., Tsumura, A., and Ando, T.: Field-effect transistor with polythiophene thin film. Synth. Met. 18, 699 (1987).CrossRefGoogle Scholar
Tsumura, A., Koezuka, H., and Ando, Y.: Polythiophene field-effect transistor: Its characteristics and operation mechanism. Synth. Met. 25, 11 (1988).CrossRefGoogle Scholar
Kozlov, V.G., Bulovic, V., Burrows, P.E., and Forrest, S.R.: Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389, 362 (1997).CrossRefGoogle Scholar
Schön, J.H., Kloc, C., Dodabalapur, A., and Batlogg, B.: An organic solid state injection laser. Science 289, 599 (2000).CrossRefGoogle ScholarPubMed
Koschorreck, M., Gehlhaar, R., Lyssenko, V.G., Swoboda, M., Hoffmann, M., and Leo, K.: Dynamics of a high-Q vertical-cavity organic laser. Appl. Phys. Lett. 87, 181108 (2005).CrossRefGoogle Scholar
Tessler, N., Denton, G.J., and Friend, R.H.: Lasing from conjugated-polymer microcavities. Nature 382, 695 (1996).CrossRefGoogle Scholar
Samuel, I.D.W., Namdas, E.B., and Turnbull, G.A.: How to recognize lasing. Nat. Photonics 3, 546 (2009).CrossRefGoogle Scholar
Chakaroun, M., Coens, A., Fabre, N., Gourdon, F., Solard, J., Fischer, A., Bourdrioua, A., and Lee, C.C.: Optimal design of a microcavity organic laser device under electrical pumping. Opt. Express 19, 493 (2011).CrossRefGoogle ScholarPubMed
Setoguchi, Y. and Adachi, C.: Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers. J. Appl. Phys. 108, 064516 (2010).CrossRefGoogle Scholar
Yoshida, K., Nakanotani, H., and Adachi, C.: Effect of Joule heating on transient current and electroluminescence in p–i–n organic light-emitting diodes under pulsed voltage operation. Org. Electron. 31, 287 (2016).CrossRefGoogle Scholar
Kasemann, D., Brückner, R., Fröb, H., and Leo, K.: Organic light-emitting diodes under high currents explored by transient electroluminescence on the nanosecond scale. Phys. Rev. B 84, 115208 (2011).CrossRefGoogle Scholar
Nakanotani, H., Oyamada, T., Kawamura, Y., Sasabe, H., and Adachi, C.: Injection and transport of high current density over 1000 A/cm2 in organic light emitting diodes under pulse excitation. Jpn. J. Appl. Phys., Part 1 44, 3659 (2005).CrossRefGoogle Scholar
Nakanotani, H., Sasabe, H., and Adachi, C.: Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density. Appl. Phys. Lett. 86, 213506 (2005).CrossRefGoogle Scholar
Chime, A.C., Bensmida, S., Chakaroun, M., Lee, M.W., Nkwawo, H., and Fischer, A.P.A.: Electrical modelling and design of ultra-fast micro-OLED with coplanar wave-guided electrodes in ON-OFF regime. Org. Electron. 56, 284 (2018).CrossRefGoogle Scholar
Meister, S., Brückner, R., Sudzius, M., Fröb, H., and Leo, K.: Optically pumped lasing of an electrically active hybrid OLED-microcavity. Appl. Phys. Lett. 112, 113301 (2018).CrossRefGoogle Scholar
Reufer, M., Riechel, S., Lupton, J.M., Feldmann, J., Lemmer, U., Schneider, D., Benstem, T., Dobbertin, T., Kowalsky, W., Gombert, A., Forberich, K., Wittwer, V., and Scherf, U.: Low-threshold polymeric distributed feedback lasers with metallic contacts. Appl. Phys. Lett. 84, 3262 (2004).CrossRefGoogle Scholar
Cui, S., Hu, Y., Lou, Z., Yi, R., Hou, Y., and Teng, F.: Light emitting field-effect transistors with vertical heterojunctions based on pentacene and tris-(8-hydroxyquinolinato) aluminum. Org. Electron. 22, 51 (2015).CrossRefGoogle Scholar
Slowik, I., Fischer, A., Fröb, H., Lenk, S., Reineke, S., and Leo, K.: Novel organic light-emitting diode design for future lasing applications. Org. Electron. 48, 132 (2017).CrossRefGoogle Scholar
Mischok, A., Brückner, R., Reinhardt, C., Sudzius, M., Lyssenko, V.G., Fröb, H., and Leo, K.: Threshold reduction by multidimensional photonic confinement in metal-organic microcavities. Proc. SPIE 9137, 91370D–1 (2014).Google Scholar
Brückner, R., Zakhidov, A.A., Scholz, R., Sudzius, M., Hintschich, S.I., Fröb, H., Lyssenko, V.G., and Leo, K.: Phase-locked coherent modes in a patterned metal–organic microcavity. Nat. Photonics 6, 322 (2012).CrossRefGoogle Scholar
Mischok, A., Brückner, R., Sudzius, M., Reinhardt, C., Lyssenko, V.G., Fröb, H., and Leo, K.: Photonic confinement in laterally structured metal-organic microcavities. Appl. Phys. Lett. 105, 051108 (2014).CrossRefGoogle Scholar
Hayashi, K., Nakanotani, H., Inoue, M., Yoshida, K., Mikhnenko, O., Nguyen, T.Q., and Adachi, C.: Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Appl. Phys. Lett. 106, 093301 (2015).CrossRefGoogle Scholar
Zhao, Y., Yun, F., Wu, Z., Li, Y., Jiao, B., Huang, Y., Li, S., Feng, L., Guo, M., Ding, W., Zhang, Y., and Dou, J.: Efficiency roll-off suppression in organic light-emitting diodes at high current densities using gold bowtie nanoantennas. Appl. Phys. Express 9, 022101 (2016).CrossRefGoogle Scholar
Meister, S., Brückner, R., Fröb, H., and Leo, K.: Electrical investigations of hybrid OLED microcavity structures with novel encapsulation methods. Proc. SPIE 9895, Organic Photonics VII, 98950B (2016).Google Scholar
Brückner, R., Sudzius, M., Fröb, H., Lyssenko, V.G., and Leo, K.: Saturation of laser emission in a small mode volume organic microcavity. J. Appl. Phys. 109, 103116 (2011).CrossRefGoogle Scholar
Nehm, F., Schubert, S., Müller-Messkamp, L., and Leo, K.: Observation of feature ripening inversion effect at the percolation threshold for the growth of thin silver films. Thin Solid Films 556, 381 (2014).CrossRefGoogle Scholar
Supplementary material: File

Devanathan et al. supplementary material

Table S1 and Figure S1

Download Devanathan et al. supplementary material(File)
File 290.6 KB