Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T21:35:45.987Z Has data issue: false hasContentIssue false

Inviscid melt spinning: As-spun crystalline alumina fibers

Published online by Cambridge University Press:  31 January 2011

F. T. Wallenberger*
Affiliation:
E. I. Du Pont de Nemours and Company, Fibers Department, P. O. Box 80302, Wilmington, Delaware 19880-0302
N. E. Weston
Affiliation:
Consultant, formerly Micron, Inc., Analytical Services Laboratory, Wilmington, Delaware 19805
S. A. Dunn
Affiliation:
University of Wisconsin, Department of Chemical Engineering, Madison, Wisconsin 53706
*
a)Address correspondence to this author.
Get access

Abstract

Inviscid melt spinning yielded the first crystalline alumina fibers directly from the melts. In this experimental process, a liquid jet having a melt viscosity of <101 poise (vs>104 for fiberglass) is extruded into propane and is thus chemically stabilized (vs rapidly quenched) before it forms Rayleigh waves and breaks up into droplets. This letter describes a 65.5% alumina-zirconia fiber, an 81.5% and a 90.6% alumina-calcia fiber, a 98.6% alumina-magnesia fiber, and a 100% alumina fiber. The δ-allomorph was identified as the crystalline phase of the melt spun 100% alumina fibers, compared to the α-allomorph reported for FIBER FP, a slurry spun and sintered 100% alumina fiber.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ashbrook, R. J., Rapid Solidification Technology Source Book (American Society for Metals, Metals Park, OH, 1983), pp. 111120, 125.Google Scholar
2Tatsumisago, M., Minami, T., and Tanaka, M., J. Am. Ceram. Soc., C97 (1981).Google Scholar
3Cunningham, R. E., Rakestraw, L. F., and Dunn, S.A., pp. 20–31 in AIChE Symposium Series, 74, 180, p. 201 (1978).Google Scholar
4Koji, H. and Fukada, K., Japan Patent Application S62–250485 (Toray KK), Gazette for Unexamined Patents, Tokukai Hl-92418 (1989).Google Scholar
5Kozakevitch, P., Rev. Metall., Paris 57 (2), 149160 (1960).CrossRefGoogle Scholar
6Wallenberger, F.T., Weston, N. E., and Dunn, S.A., Mater. Lett. 9 (4), 121127 (1990).CrossRefGoogle Scholar
7Wallenberger, E.T., Weston, N. E., and Dunn, S.A., Proc. 7th CIMTECH World Ceramics Congress, June 1990 (Elsevier, Amsterdam, 1991).Google Scholar
8Wallenberger, F.T., Weston, N. E., and Dunn, S. A., SAMPE Quarterly 21, 3 (April 1990).Google Scholar
9Colin, F., Rev. Int. Hautes Temp. Refract. 5, 269 (1968).Google Scholar
10Rooksby, H.P. and Rooymans, C.J.M., Clay Min. Bull. 4, 234 (1961).CrossRefGoogle Scholar
11Rao, M. R., J. Am. Ceram. Soc. 51, 50 (1968).Google Scholar
12Sarjeant, P.T. and Roy, R., in Reactivity of Solids, edited by Mitchel, J.W.et al. (Wiley-Interscience, 1969), pp. 725733.Google Scholar
13Feigelson, R. S., Mater. Res. Bull. XIII (10), 47 (1988).CrossRefGoogle Scholar
14Dhingra, A. K., Phil. Trans. Royal Soc. London A294, 411 (1980).Google Scholar
15Romine, J. C., Ceramic Engineering Sci. Proc. 8, 755 (1987).CrossRefGoogle Scholar
16Alper, A. M., Science of Ceramics, edited by Stewart, G. H. (Academic Press, New York, 1967), Vol. 3, p. 339.Google Scholar