Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T16:32:52.400Z Has data issue: false hasContentIssue false

The mechanism of spontaneous infiltration of Al–Si alloy into SiC preform in air

Published online by Cambridge University Press:  31 January 2011

X. M. Xi
Affiliation:
Materials Research and Education Center, 201 Ross Hall, Auburn University, Auburn, Alabama 36849–5351
L. M. Xiao
Affiliation:
Materials Research and Education Center, 201 Ross Hall, Auburn University, Auburn, Alabama 36849–5351
X. F. Yang*
Affiliation:
Materials Research and Education Center, 201 Ross Hall, Auburn University, Auburn, Alabama 36849–5351
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

Rapid, spontaneous infiltration can be achieved by dipping a SiC preform that contains pyrolyzed carbon into an Al–Si alloy bath in an open air environment. The mechanism for infiltration is investigated in the present work by studying the effects of several relevant parameters on the infiltration process. Experimental results have shown that the requirements for rapid spontaneous infiltration are an infiltration temperature higher than 1400 °C, the presence of a pyrolyzed carbon, and the presence of SiC particle in the preforms. The concentration of Si in the alloy does not have significant influence on the infiltration rate, but it strongly affects the resulting microstructures in the infiltrated composites.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lin, R. Y., Warrier, S. G., Blue, C. A., Chen, C. C., Eppich, C. A., and Blue, R. A., JOM 46 (3), 26 (1994).CrossRefGoogle Scholar
2.Warrier, S. G., Blue, C. A., and Lin, R. Y., J. Mater. Sci. 28, 760 (1993).CrossRefGoogle Scholar
3.Dhandapani, S. P., Jayaram, V., and Surappa, M. K., Acta Metall. Mater. 42 (3), 649 (1994).CrossRefGoogle Scholar
4.Aghajanian, M. K., Rocazella, M. A., Burke, J.T., and Kerk, S. D., J. Mater. Sci. 26, 447 (1992).CrossRefGoogle Scholar
5.Hillig, W. B., Ceram. Eng. Sci. Proc. 8 (7–8), 834 (1987).CrossRefGoogle Scholar
6.Hillig, W. B., J. Am. Ceram. Soc. 71 (2), C-96 (1988).CrossRefGoogle Scholar
7.Hillig, W. B., Am. Ceram. Soc. Bull. 73 (4), 56 (1994).Google Scholar
8.Semlak, K. A. and Rhines, F. N., Trans. Metall. Soc. AIME 212, 325 (1958).Google Scholar
9.Ness, J. N. and Page, T. F., J. Mater. Sci. 21, 1377 (1986).CrossRefGoogle Scholar
10.Messner, R. P. and Chiang, Y. M., J. Am. Ceram. Soc. 73, 1193 (1990).CrossRefGoogle Scholar
11.Yang, X. F. and Xi, X. M., J. Mater. Res. 10, 2415 (1995).CrossRefGoogle Scholar
12.Xi, X. M. and Yang, X. F., J. Am. Ceram. Soc. (in press).Google Scholar
13.Jenkins, G. M. and Kawamura, K., Polymeric Carbons (Cambridge University, Press, Cambridge, 1976).Google Scholar
14.Han, D. S., Jones, H., and Atkinson, H. V., J. Mater. Sci. 28, 2654 (1993).CrossRefGoogle Scholar
15.Yang, X. F. and Xi, X. M., J. Mater. Sci. 30, 5099 (1995).Google Scholar
16.Viala, J. C., Bosselet, F., Laurent, V., and Lepetitcorps, Y., J. Mater. Sci. 28, 5301 (1993).CrossRefGoogle Scholar
17.Viala, J. C., Fortier, P., and Bouix, J., J. Mater. Sci. 25, 1842 (1990).Google Scholar
18.Naidich, Ju. V., Prog. Surf. Membrane Sci. 14, 353 (1981).CrossRefGoogle Scholar
19.Aksay, I. A., Hoge, C. E., and Pask, J. A., J. Phys. Chem. 78 (12), 1178 (1974).CrossRefGoogle Scholar
20.Li, J. G. and Hausner, H., J. Am. Ceram. Soc. (1995, in press).Google Scholar