Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T02:25:40.289Z Has data issue: false hasContentIssue false

Metastable solid solution extension of mullite by rapid solidification

Published online by Cambridge University Press:  31 January 2011

John P. Pollinger
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
Gary L. Messing
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

The melt self-quenching technique has been used to examine the metastable solid solution extension of mullite formed from rapidly solidified Al2O3.SiO2 melts. Increasing melt cooling rates were seen to increase the Al2O3 content of mullite, decrease the amount of mullite precipitating, and decrease the melt compositional range over which mullite forms. The maximum mullite Al2O3 content achieved was 77.3 mol % for cooling rates between 103 and 105 K/s. The highest Al2O3 content mullite also exhibited very similar ao and bo lattice parameters indicating a structure close to tetragonal symmetry (equilibrium mullite is orthorhombic).

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bowen, N. L. and Greig, J. W., J. Am. Ceram. Soc. 7 (4), 238 (1924).CrossRefGoogle Scholar
2Risbud, S. H., Draper, V. F., and Pask, J. A., J. Am. Ceram. Soc. 61 (9-10), 471 (1978).CrossRefGoogle Scholar
3Cameron, W. E., Am. Ceram. Soc. Bull. 56 (11), 1003 (1977).Google Scholar
4Prochaska, S. and Klug, F. J., J. Am. Ceram. Soc. 66 (12), 874 (1983).CrossRefGoogle Scholar
5Cameron, W. E., Am. Mineral. 62, 747 (1977).Google Scholar
6Majumdar, A. J. and Welch, J. H., Trans. Br. Ceram. Soc. 62, (8), 603 (1963).Google Scholar
7Agrell, S. O. and Smith, J. V., J. Am. Ceram. Soc. 43 (2), 69 (1960).CrossRefGoogle Scholar
8Tromel, G., Obst, K. H., Konopicky, K., Bauer, H., and Patzak, I., Ber. Dsch. Keram. Ges. 34 (12), 397 (1957).Google Scholar
9Davis, R. F. and Pask, J. A., J. Am. Ceram. Soc. 55, (10), 525 (1972).CrossRefGoogle Scholar
10Aksay, I. A. and Pask, J. A., J. Am. Ceram. Soc. 58 (11-12), 507 (1975).CrossRefGoogle Scholar
11Risbud, S. H. and Pask, J. A., J. Am. Ceram. Soc. 62 (4), 214 (1979).CrossRefGoogle Scholar
12Kriven, W. M. and Pask, J. A., J. Am. Ceram. Soc. 66 (9), 649 (1983).CrossRefGoogle Scholar
13McDowell, J. F. and Beal, G. H., J. Am. Ceram. Soc. 52 (1), 17 (1969).CrossRefGoogle Scholar
14Takamori, T. and Roy, R., J. Am. Ceram. Soc. 56 (12), 639 (1973).CrossRefGoogle Scholar
15Rapid Solidification Processing, Principles and Technologies, II, edited by Mehrabian, R., Kear, B. H., and Cohen, M. (Claiters, Baton Rouge, 1980).Google Scholar
16Mineral Constitution Laboratory, The Pennsylvania State University, University Park, PA.Google Scholar
17Pollinger, J. P. and Messing, G. L., in Emergent Process Methods for High Technology Ceramics, edited by Davis, R. F., Palmour, H. III , and Porter, R. L. (Plenum, New York, 1984), Vol. 17, pp. 505517.CrossRefGoogle Scholar
18Sargeant, P. and Roy, R., Mater. Res. Bull. 3, 265 (1968).CrossRefGoogle Scholar
19Aksay, I. A., Pask, J. A., and Davis, R. F., J. Am. Ceram. Soc. 62 (7-8), 332 (1979).CrossRefGoogle Scholar
20Kingery, W. D., J. Am. Ceram. Soc. 42 (12), 617 (1959).CrossRefGoogle Scholar