Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T21:49:27.740Z Has data issue: false hasContentIssue false

Methyl versus acetylene as diamond growth species

Published online by Cambridge University Press:  31 January 2011

Stephen J. Harris
Affiliation:
Physical Chemistry Department, General Motors Research Laboratories, Warren, Michigan 48090-9055
L. Robbin Martin
Affiliation:
Aerophysics Laboratory, The Aerospace Corporation, P.O. Box 92957, Los Angeles, California 90009
Get access

Abstract

We have modeled plasma-assisted diamond growth on substrates placed in a high velocity 1-dimensional flow. The gas consisted of methane or acetylene injected into a flow of partially dissociated hydrogen gas at 800 °C. Diamond is formed only near the injector. More diamond is formed when methane is the additive, and Raman spectra show that the quality of the diamond films is also higher when methane is the additive. The model, which includes detailed chemistry, convection, concentration diffusion, and thermal diffusion, shows that with this experimental arrangement only methane and methyl radicals are present in significant quantities when methane is added, while only acetylene is present when acetylene is added. We conclude that (1) Diamond films can be grown directly from methyl radicals (or, possibly, from methane) and from acetylene. This suggests that a variety of hydrocarbons could act as growth species. (2) An environment containing methane and methyl is much more effective for growing diamond films than one containing acetylene. (3) The quality of the diamond film depends on the identity of the growth species, with acetylene producing lower quality films than methyl (or methane). (4) The fall-off in diamond formation with distance from the injector is due to destruction of species crucial to diamond growth on the silicon substrates.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Derjaguin, B.V. and Fedoseev, D.V., Sci. Am. 233, 102 (1976).CrossRefGoogle Scholar
2Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, 183 (1982).CrossRefGoogle Scholar
3Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986).CrossRefGoogle Scholar
4Tsuda, M., Nakajima, M., and Oikawa, S., Jpn. J. Appl. Phys. 26, L527 (1987).CrossRefGoogle Scholar
5Huang, D., Frenklach, M., and Maroncelli, M., J. Phys. Chem. 92, 6379 (1988).CrossRefGoogle Scholar
6Harris, S. J., Appl. Phys. Lett. 56, 2298 (1990).CrossRefGoogle Scholar
7Kawato, T. and Kondo, K., Jpn. J. Appl. Phys. 26, 1429 (1987).CrossRefGoogle Scholar
8Celii, F. G., Pehrsson, P. E., Wang, H-t., and Butler, J. E., Appl. Phys. Lett. 52, 2043 (1988).CrossRefGoogle Scholar
9Celii, F. G. and Butler, J. E., Appl. Phys. Lett. 54, 1031 (1989).CrossRefGoogle Scholar
10Celii, F. G., Pehrsson, P. E., Wang, H., Nelson, H. H., and Butler, J. E., In-situ detection of gas phase species in the filament assisted diamond growth environment, Advances in Laser Sciences IV, AIP Conference Proceedings, edited by Stwalley, W. C. and Gole, J. (to be published).Google Scholar
11Matsui, Y., Yuuki, A., Sahara, M., and Hirose, Y., Jpn. J. Appl. Phys. 28, 1718 (1989).CrossRefGoogle Scholar
12Harris, S. J., Weiner, A.M., and Perry, Thomas A., Appl. Phys. Lett. 53, 1605 (1988).CrossRefGoogle Scholar
13Harris, S. J. and Weiner, A. M., J. Appl. Phys. 67, 6520 (1990).CrossRefGoogle Scholar
14Meier, U., Kohse-Hoinghaus, K., Schafer, L., and Klages, C., Appl. Opt. (submitted).Google Scholar
15Harris, S. J., J. Appl. Phys. 65, 3044 (1989).CrossRefGoogle Scholar
16Martin, L. R. and Hill, M.W., Appl. Phys. Lett. 55, 2248 (1989).CrossRefGoogle Scholar
17Martin, L. R. and Hill, M.W., J. Mater. Sci. Lett. 9, 621 (1990).CrossRefGoogle Scholar
18Sepehrad, A., Marshall, R.M., and Purnell, H., Int. J. Chem. Kinetics 11, 411 (1979).CrossRefGoogle Scholar
19Bourene, M., Dutuit, O., and Le Calve, J., J. Chem. Phys. 63, 1668 (1975).CrossRefGoogle Scholar
20Smooke, M., J. Comput. Phys. 48, 72 (1982).CrossRefGoogle Scholar
21Wood, B. J. and Wise, H., J. Phys. Chem. 66, 1049 (1962).CrossRefGoogle Scholar
22Chauhan, S. P., Angus, J. C., and Gardner, N. C., J. Appl. Phys. 47, 4746 (1976).CrossRefGoogle Scholar
23Harris, S. J. and Weiner, A. M., Appl. Phys. Lett. 55, 2179 (1989).CrossRefGoogle Scholar
24Harris, S.J., Belton, D. N., Weiner, A.M., and Schmieg, S.J., J. Appl. Phys. 66, 5353 (1989).CrossRefGoogle Scholar
25Dean, A.M., J. Phys. Chem. 94, 1432 (1990).CrossRefGoogle Scholar
26Munson, M.S.B. and Anderson, R.C., Carbon 1, 51 (1963).CrossRefGoogle Scholar
27Harris, S. J. and Weiner, A. M., Annu. Rev. Phys. Chem. 36, 31 (1985).CrossRefGoogle Scholar
28Frenklach, M., Clary, D.W., Gardiner, W.C., and Stein, S.E., in Twentieth Symposium (International) on Combustion (The Combustion Institute, Seattle, WA, 1985), p. 887.Google Scholar
29Frenklach, M., J. Appl. Phys. 65, 5142 (1989).CrossRefGoogle Scholar