Published online by Cambridge University Press: 31 January 2011
The formation processes of epitaxial nickel silicides, resulting from the interaction of nickel silicide films (10 nm–100 nm) on (111) silicon (Si) substrates after furnace annealing, have been studied using transmission electron microscopy (TEM) and x-ray diffraction (XRD) techniques. The formation of type-A epitaxial grains (i.e., grown with the same orientation of the underlying Si substrate) and type-B epitaxial grains (i.e., rotated by 180± around the surface normal) in “thick” epitaxial films (i.e., greater than 35 nm) is proposed to be linked to the formation of a fluorite-based CuPt (L11)-like NiSi phase. This phase is found to be a metastable phase and is believed to be a transitional phase toward the formation of the equilibrium NiSi2 phase in both type-A and type-B orientations. In addition, we have found that a fluorite-based CuPt-like NiSi may even coexist with a fluorite-based CuAu I-like structure. The interrelationship between these two structures is discussed in the context of a displacive transformation process in fcc structures as originally proposed by Hansson and Barnes [Acta Metall. 12, 315 (1964)] and Pashley et al. [Philos. Mag. 19, 83 (1969)].