Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T01:23:16.710Z Has data issue: false hasContentIssue false

The microstructural evolution and thermal stability of nanocrystalline ball-milled Ni–15 at.% W powder

Published online by Cambridge University Press:  11 March 2013

Gayatri K. Rane
Affiliation:
Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), 70569 Stuttgart, Germany
Daniel Apel
Affiliation:
Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany
Udo Welzel
Affiliation:
Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), 70569 Stuttgart, Germany
Eric Jan Mittemeijer*
Affiliation:
Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), 70569 Stuttgart, Germany; and Institute for Materials Science, University of Stuttgart, 70569 Stuttgart, Germany
*
a)Address all correspondence to this author. e-mail: e.j.mittemeijer@is.mpg.de
Get access

Abstract

A mixture of pure Ni powder and pure W powder with a nominal composition Ni–15 at.% W was subjected to ball milling in a planetary mill and in a shaker mill. The microstructural evolution upon milling and upon subsequent annealing in the temperature range from 25 to 800 °C was investigated using ex situ and in situ x-ray diffraction integral breadth (single-line and Williamson–Hall) methods and whole powder pattern modeling as well as scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. A nanocrystalline Ni(W) solid solution phase develops upon ball milling, with a higher W content by milling in the shaker mill as compared to the planetary mill. Grain coarsening studies indicated a very high stability of the nanocrystalline state, up to almost about 500 °C. Results of annealing at higher temperatures showed that, while the dissolved W content increased in the Ni matrix, a high stability against grain coarsening occurs, which can be ascribed to the presence of (segregated) W atoms at the grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Koch, C.C., Ovid’ko, I.A., Seal, S., and Veprek, S.: Structural Nanocrystalline Materials - Fundamentals and Applications (Cambridge University Press, Cambridge, UK, 2007).CrossRefGoogle Scholar
Gleiter, H.: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: The deformation physics of nanocrystalline metals: Experiments, analysis, and computations. J. Mater. 58, 41 (2006).Google Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).CrossRefGoogle Scholar
Lu, L., Sui, M.L., and Lu, K.: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463 (2000).CrossRefGoogle ScholarPubMed
Croat, J.J., Herbst, J.F., Lee, R.W., and Pinkerton, F.E.: Pr-Fe and Nd-Fe based materials- a new class of high-performance permanent magnets. J. Appl. Phys. 55, 2078 (1984).CrossRefGoogle Scholar
Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
Koch, C., Scattergood, R., Darling, K., and Semones, J.: Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci. 43, 7264 (2008).CrossRefGoogle Scholar
Murty, B.S. and Ranganathan, S.: Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43, 101 (1998).CrossRefGoogle Scholar
Detor, A.J. and Schuh, C.A.: Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 55, 371 (2007).CrossRefGoogle Scholar
Hansen, K. and Pantleon, K.: Microstructure stability of silver electrodeposits at room temperature. Scr. Mater. 58, 96 (2008).CrossRefGoogle Scholar
Ames, M., Markmann, J., Karos, R., Michels, A., Tschoepe, A., and Birringer, R.: Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 56, 4255 (2008).CrossRefGoogle Scholar
Mittemeijer, E.J.: Fundamentals of Materials Science (Springer-Verlag, Berlin, Germany, 2010).Google Scholar
Weissmüller, J.: Alloy effects in nanostructures. Nanostruct. Mater. 3, 261 (1993).CrossRefGoogle Scholar
Liu, F. and Kirchheim, R.: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264, 385 (2004).CrossRefGoogle Scholar
Krill, C.E., Ehrhardt, H., and Birringer, R.: Thermodynamic stabilization of nanocrystallinity. Z. Metallkd. 96, 1134 (2005).CrossRefGoogle Scholar
Liu, K.W. and Mücklich, F.: Thermal stability of nano-RuAl produced by mechanical alloying. Acta Mater. 49, 395 (2001).CrossRefGoogle Scholar
Michels, A., Krill, C.E., Ehrhardt, H., Birringer, R., and Wu, D.T.: Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials. Acta Mater. 47, 2143 (1999).CrossRefGoogle Scholar
Eckert, J., Holzer, J.C., and Johnson, W.L.: Thermal-stability and grain-growth behavior of mechanically alloyed nanocrystalline Fe-Cu alloys. J. Appl. Phys. 73, 131 (1993).CrossRefGoogle Scholar
Younes-Metzler, O., Zhu, L., and Gileadi, E.: The anomalous codeposition of tungsten in the presence of nickel. Electrochim. Acta 48, 2551 (2003).CrossRefGoogle Scholar
Yao, S., Zhao, S., Guo, H., and Kowaka, M.: A new amorphous alloy deposit with high corrosion resistance. Corrosion 52, 183 (1996).CrossRefGoogle Scholar
Osada, M., Maeda, K., Kawamoto, Y., Shimizu, Y., Nishimura, T., and Yamaharu, S.: U.S. Patent No. 6,773,247, 2004.
Goyal, A., Feenstra, R., Paranthaman, M., Thompson, J.R., Kang, B.Y., Cantoni, C., Lee, D.F., List, F.A., Martin, P.M., Lara-Curzio, E., Stevens, C., Kroeger, D.M., Kowalewski, M., Specht, E.D., Aytug, T., Sathyamurthy, S., Williams, R.K., and Ericson, R.E.: Strengthened, biaxially textured Ni substrate with small alloying additions for coated conductor applications. Physica C 382, 251 (2002).CrossRefGoogle Scholar
Hongli, S., Yue, Z., Min, L., Lin, M., Dong, H., YingXiao, Z., and Meiling, Z.: Preparation of cube textured Ni5W/Ni9W composite substrate for YBCO coated conductors. IEEE Trans. Appl. Supercond. 17, 3420 (2007).CrossRefGoogle Scholar
Tiearney, T. and Grant, N.: Measurement of structural parameters important in creep of Ni-Mo and Ni-W solid solutions. Metall. Mater. Trans. A 13, 1827 (1982).CrossRefGoogle Scholar
Zhou, Y.X., Ghalsasi, S.V., Hanna, M., Tang, Z.J., Meng, R.L., and Salama, K.: Fabrication of cube-textured Ni-9%atW substrate for YBCO superconducting wires using powder metallurgy. IEEE Trans. Appl. Supercond. 17(2), 3428 (2007).CrossRefGoogle Scholar
Gao, M.M., Suo, H.L., Gao, P.K., Zhao, Y., Ma, L., Wang, J.H., Liu, M., Qiu, H.Q., and Ji, Y.: Stable cube texture in an advanced Ni alloy composite substrate prepared by powder metallurgic method. J. Phys. Conf. Ser. 234, 022010 (2010).CrossRefGoogle Scholar
Bhattacharjee, P.P. and Ray, R.K.: Effect of processing variables on cube texture formation in powder metallurgically prepared Ni and Ni-W alloy tapes for use as substrates for coated conductor applications. Mater. Sci. Eng., A 459, 309 (2007).CrossRefGoogle Scholar
Eliaz, N., Sridhar, T.M., and Gileadi, E.: Synthesis and characterization of nickel tungsten alloys by electrodeposition. Electrochim. Acta 50, 2893 (2005).CrossRefGoogle Scholar
Trelewicz, J.R. and Schuh, C.A.: The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 55, 5948 (2007).CrossRefGoogle Scholar
Trelewicz, J.R. and Schuh, C.A.: Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79, 094112 (2009).CrossRefGoogle Scholar
Yamasaki, T.: High-strength nanocrystalline Ni-W alloys produced by electrodeposition and their embrittlement behaviors during grain growth. Scr. Mater. 44, 1497 (2001).CrossRefGoogle Scholar
Welzel, U., Kummel, J., Bischoff, E., Kurz, S., and Mittemeijer, E.J.: Nanoscale planar faulting in nanocrystalline Ni-W thin films: Grain growth, segregation, and residual stress. J. Mater. Res. 26, 2558 (2011).CrossRefGoogle Scholar
González, G., Sagarzazu, A., Villalba, R., and Ochoa, J.: Comparative study of NiW, NiMo and MoW prepared by mechanical alloying. J. Alloys Compd. 434435, 525 (2007).CrossRefGoogle Scholar
Rane, G.K., Apel, D., Welzel, U., and Mittemeijer, E.J.: Diffraction analysis of grain growth in nanocrystalline Ni-W powders prepared by mechanical milling. Z. Kristallogr. Proc. I, 247 (2011).Google Scholar
Aning, A.O., Wang, Z., and Courtney, T.H.: Tungsten solution kinetics and amorphisation of nickel in mechanically alloyed Ni-W alloys. Acta Metall. Mater. 41, 165 (1993).CrossRefGoogle Scholar
Detor, A.J. and Schuh, C.A.: Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni-W system. Acta Mater. 55, 4221 (2007).CrossRefGoogle Scholar
Choi, P., Al-Kassab, T., Gärtner, F., Kreye, H., and Kirchheim, R.: Thermal stability of nanocrystalline nickel–18 at.% tungsten alloy investigated with the tomographic atom probe. Mater. Sci. Eng., A 353, 74 (2003).CrossRefGoogle Scholar
Mittemeijer, E.J. and Scardi, P.: Diffraction Analysis of the Microstructure of Materials (Springer, Germany, 2004).CrossRefGoogle Scholar
Mittemeijer, E.J. and Welzel, U.: Modern Diffraction Methods (Wiley-VCH, Germany, 2012).CrossRefGoogle Scholar
Delhez, R., de Keijser, T.H., and Mittemeijer, E.J.: Determination of crystallite size and lattice-distortions through x-ray-diffraction line-profile analysis - recipes, methods and comments. Fresenius J. Anal. Chem. 312, 1 (1982).CrossRefGoogle Scholar
Mittemeijer, E.J. and Welzel, U.: The "state of the art" of the diffraction analysis of crystallite size and lattice strain. Z. Kristallogr. 223, 552 (2008).CrossRefGoogle Scholar
Scardi, P. and Leoni, M.: Whole powder pattern modelling. Acta Crystallogr., Sect. A 58, 190, (2002).CrossRefGoogle ScholarPubMed
de Keijser, T.H., Langford, J.I., Mittemeijer, E.J., and Vogels, A.B.P.: Use of the Voigt function in a single-line method for the analysis of x-ray diffraction line broadening. J. Appl. Crystallogr. 15, 308 (1982).CrossRefGoogle Scholar
Langford, J.I. and Wilson, A.J.C.: Scherrer after 60 years - survey and some new results in determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978).CrossRefGoogle Scholar
Williamson, G.K. and Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. Mater. 1, 22 (1953).CrossRefGoogle Scholar
Leineweber, A. and Mittemeijer, E.J.: Notes on the order-of-reflection dependence of microstrain broadening. J. Appl. Crystallogr. 43, 981 (2010).CrossRefGoogle Scholar
Biju, V., Sugathan, N., Vrinda, V., and Salini, S.L.: Estimation of lattice strain in nanocrystalline silver from x-ray diffraction line broadening. J. Mater. Sci. 43, 1175 (2008).CrossRefGoogle Scholar
Rosenberg, Y., Machavariani, V.S., Voronel, A., Garber, S., Rubshtein, A., Frenkel, A.I., and Stern, E.A.: Strain energy density in the x-ray powder diffraction from mixed crystals and alloys. J. Phys. Condens. Mater. 12, 8081 (2000).CrossRefGoogle Scholar
Scardi, P. and Leoni, M.: Whole powder pattern modelling: Theory and applications, in Diffraction Analysis of the Microstructure of Materials, edited by Mittemeijer, E.J. and Scardi, P. (Springer-Verlag, Berlin, Germany, 2004) p. 51.CrossRefGoogle Scholar
Scardi, P. and Leoni, M.: Line profile analysis: pattern modelling versus profile fitting. J. Appl. Crystallogr. 39, 24 (2006).CrossRefGoogle Scholar
Scardi, P., Leoni, M., and D’Incau, M.: Whole powder pattern modelling of cubic metal powders deformed by high energy milling. Z. Kristallogr. 222, 129 (2007).Google Scholar
Scardi, P.: Chapter 13 microstructural properties: Lattice defects and domain size effects, in Powder Diffraction: Theory and Practice, edited by Dinnebier, R.E. and Billinge, S.J.L. (The Royal Society of Chemistry, Cambridge, UK, 2008) p. 376.CrossRefGoogle Scholar
Warren, B.E.: X-ray Diffraction (Addison-Wesley, Reading, MA, 1969).Google Scholar
Velterop, L., Delhez, R., de Keijser, T.H., Mittemeijer, E.J., and Reefman, D.: X-ray diffraction analysis of stacking and twin faults in f.c.c. metals: A revision and allowance for texture and non-uniform fault probabilities. J. Appl. Crystallogr. 33, 296 (2000).CrossRefGoogle Scholar
Leoni, M., Confente, T., and Scardi, P.: PM2K: A flexible program implementing whole powder pattern modelling. Z. Kristallogr. 2006(Suppl. 23), 249 (2006).CrossRefGoogle Scholar
SGTE Landolt-Börnstein - Group IV Physical Chemistry (Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2006).
Delhez, R. and Mittemeijer, E.J.: An improved α2 elimination. J. Appl. Crystallogr. 8, 609 (1975).CrossRefGoogle Scholar
Leineweber, A. and Mittemeijer, E.J.: Diffraction line broadening due to lattice-parameter variations caused by a spatially varying scalar variable: its orientation dependence caused by locally varying nitrogen content in epsilon-FeN0.433. J. Appl. Crystallogr. 37, 123 (2004).CrossRefGoogle Scholar
Rane, G.K., Welzel, U., and Mittemeijer, E.J.: Grain growth studies on nanocrystalline Ni powder. Acta Mater. 60, 7011 (2012).CrossRefGoogle Scholar
Brandes, E.A. and Brook, G.B.: Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann, Oxford, UK, 1992).Google Scholar
Jang, D. and Atzmon, M.: Grain-boundary relaxation and its effect on plasticity in nanocrystalline Fe. J. Appl. Phys. 99, 083504 (2006).CrossRefGoogle Scholar
Zhao, Y.H., Sheng, H.W., and Lu, K.: Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition. Acta Mater. 49, 365 (2001).CrossRefGoogle Scholar
Choi, P., da Silva, M., Klement, U., Al-Kassab, T., and Kirchheim, R.: Thermal stability of electrodeposited nanocrystalline Co-1.1 at.%P. 53, 4473 (2005).
Blázquez, J.S., Ipus, J.J., Millán, M., Franco, V., Conde, A., Oleszak, D., and Kulik, T.: Supersaturated solid solution obtained by mechanical alloying of 75% Fe, 20% Ge and 5% Nb mixture at different milling intensities. J. Alloys Compd. 469, 169 (2009).CrossRefGoogle Scholar
Kuru, Y., Wohlschlogel, M., Welzel, U., and Mittemeijer, E.J.: Large excess volume in grain boundaries of stressed, nanocrystalline metallic thin films: Its effect on grain-growth kinetics. Appl. Phys. Lett. 95, 163112 (2009).CrossRefGoogle Scholar