Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T19:22:23.331Z Has data issue: false hasContentIssue false

Microstructure and electrochemical properties of nanoporous gold produced by dealloying Au-based thin film nanoglass

Published online by Cambridge University Press:  27 July 2018

Pierre Denis*
Affiliation:
Institute of Micro and Nanomaterials, University of Ulm, Ulm 89081, Germany
Hans-Jörg Fecht
Affiliation:
Institute of Micro and Nanomaterials, University of Ulm, Ulm 89081, Germany
Yanpeng Xue*
Affiliation:
Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Torino 10125, Italy
Eirini Maria Paschalidou
Affiliation:
Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Torino 10125, Italy
Paola Rizzi
Affiliation:
Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Torino 10125, Italy
Livio Battezzati
Affiliation:
Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Torino 10125, Italy
*
a)Address all correspondence to these authors. e-mail: pierre.denis@uni-ulm.de
b)e-mail: yxue@unito.it
Get access

Abstract

In this study, Au-based nanoglasses in the form of thin films deposited by magnetron sputtering are comparatively dealloyed. The films have either nanograined or nanocolumnar microstructure, depending on the working pressure of Ar in the sputtering chamber. Nanocolumnar thin films exhibit much higher dealloying rate reducing effectively the dealloying time with respect to nanograined and homogenous thin films. Electrocatalysis experiments indicate that the resulting nanoporous films are active for the methanol electrooxidation, with promising results in term of stability especially for the dealloyed nanocolumnar film.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ding, Y., Kim, Y.J., and Erlebacher, J.: Nanoporous gold leaf: “Ancient technology ”/advanced material. Adv. Mater. 16, 1897 (2004).CrossRefGoogle Scholar
Morrish, R., Dorame, K., and Muscat, A.J.: Formation of nanoporous Au by dealloying AuCu thin films in HNO3. Scr. Mater. 64, 856 (2011).CrossRefGoogle Scholar
Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., and Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).CrossRefGoogle ScholarPubMed
McCue, I., Benn, E., Gaskey, B., and Erlebacher, J.: Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263 (2016).CrossRefGoogle Scholar
Scaglione, F., Celegato, F., Rizzi, P., and Battezzati, L.: A comparison of de-alloying crystalline and amorphous multicomponent Au alloys. Intermetallics 66, 82 (2015).CrossRefGoogle Scholar
Paschalidou, E.M., Celegato, F., Scaglione, F., Rizzi, P., Battezzati, L., Gebert, A., Oswald, S., Wolff, U., Mihaylov, L., and Spassov, T.: The mechanism of generating nanoporous Au by de-alloying amorphous alloys. Acta Mater. 119, 177 (2016).CrossRefGoogle Scholar
Xue, Y., Scaglione, F., Rizzi, P., and Battezzati, L.: Improving the chemical de-alloying of amorphous Au alloys. Corros. Sci. 127, 141 (2017).CrossRefGoogle Scholar
Qiu, H-J., Wang, J.Q., Liu, P., Wang, Y., and Chen, M.W.: Hierarchical nanoporous metal/metal-oxide composite by dealloying metallic glass for high-performance energy storage. Corros. Sci. 96, 196 (2015).CrossRefGoogle Scholar
Erlebacher, J.: Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys. Rev. Lett. 106, 1 (2011).CrossRefGoogle ScholarPubMed
Gupta, G., Thorp, J.C., Mara, N.A., Dattelbaum, A.M., Misra, A., and Picraux, S.T.: Morphology and porosity of nanoporous Au thin films formed by dealloying of AuxSi1−x. J. Appl. Phys. 112, 1 (2012).CrossRefGoogle Scholar
Dixon, M.C., Daniel, T.A., Hieda, M., Smilgies, D.M., Chan, M.H.W., and Allara, D.L.: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23, 2414 (2007).CrossRefGoogle ScholarPubMed
Li, X., Qiu, H-J., Wang, J.Q., and Wang, Y.: Corrosion of ternary Mn–Cu–Au to nanoporous Au–Cu with widely tuned Au/Cu ratio for electrocatalyst. Corros. Sci. 106, 55 (2016).CrossRefGoogle Scholar
Ding, S., Liu, Y., Li, Y., Liu, Z., Sohn, S., Walker, F.J., and Schroers, J.: Combinatorial development of bulk metallic glasses. Nat. Mater. 13, 1 (2014).CrossRefGoogle ScholarPubMed
Gleiter, H.: The way from today’s materials to new kinds of amorphous solids: Nano-glasses. Proc. Indian Natl. Sci. Acad. 80, 55 (2014).CrossRefGoogle Scholar
Gleiter, H.: Nanoglasses: A new kind of noncrystalline material and the way to an age of new technologies? Small 12, 2225 (2016).CrossRefGoogle Scholar
Fang, J.X., Vainio, U., Puff, W., Würschum, R., Wang, X.L., Wang, D., Ghafari, M., Jiang, F., Sun, J., Hahn, H., and Gleiter, H.: Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett. 12, 458 (2012).CrossRefGoogle ScholarPubMed
Wang, J.Q., Chen, N., Liu, P., Wang, Z., Louzguine-Luzgin, D.V., Chen, M.W., and Perepezko, J.H.: The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater. 79, 30 (2014).CrossRefGoogle Scholar
Witte, R., Feng, T., Fang, J.X., Fischer, A., Ghafari, M., Kruk, R., Brand, R.A., Wang, D., Hahn, H., and Gleiter, H.: Evidence for enhanced ferromagnetism in an iron-based nanoglass. Appl. Phys. Lett. 103, 73106 (2013).CrossRefGoogle Scholar
Wang, X.L., Jiang, F., Hahn, H., Li, J., Gleiter, H., Sun, J., and Fang, J.X.: Plasticity of a scandium-based nanoglass. Scr. Mater. 98, 40 (2015).CrossRefGoogle Scholar
Chen, N., Frank, R., Asao, N., Louzguine-Luzgin, D.V., Sharma, P., Wang, J.Q., Xie, G.Q., Ishikawa, Y., Hatakeyama, N., Lin, Y.C., Esashi, M., Yamamoto, Y., and Inoue, A.: Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 59, 6433 (2011).CrossRefGoogle Scholar
Guo, H., Zhang, W., Qin, C., Qiang, J., Chen, M., and Inoue, A.: Glass-forming ability and properties of new Au-based glassy alloys with low Au concentrations. Mater. Trans. 50, 1290 (2009).CrossRefGoogle Scholar
Xiao, S., Xiao, F., Hu, Y., Yuan, S., Wang, S., Qian, L., and Liu, Y.: Hierarchical nanoporous gold–platinum with heterogeneous interfaces for methanol electrooxidation. Sci. Rep. 4, 4370 (2015).CrossRefGoogle Scholar
Suh, J-Y., Dale Conner, R., Paul Kim, C., Demetriou, M.D., and Johnson, W.L.: Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses. J. Mater. Res. 25, 982 (2010).CrossRefGoogle Scholar
Sniadecki, Z., Wang, D., Ivanisenko, Y., Chakravadhanula, V.S.K., Kübel, C., Hahn, H., and Gleiter, H.: Nanoscale morphology of Ni50Ti45Cu5 nanoglass. Mater. Charact. 113, 26 (2016).CrossRefGoogle Scholar
Thornton, J.A.: High rate thick film growth. Annu. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
Thornton, J.A.: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666 (1974).CrossRefGoogle Scholar
Chan, K-Y. and Teo, B-S.: Atomic force microscopy (AFM) and X-ray diffraction (XRD) investigations of copper thin films prepared by dc magnetron sputtering technique. Microelectron. J. 37, 1064 (2006).CrossRefGoogle Scholar
Kaciulis, S., Mezzi, A., Fiore, G., Ichim, I., Battezzati, L., and Rizzi, P.: XPS study of gold-based metallic glass. Surf. Interface Anal. 42, 597 (2010).CrossRefGoogle Scholar
Eisenbart, M., Klotz, U.E., Busch, R., and Gallino, I.: A colourimetric and microstructural study of the tarnishing of gold-based bulk metallic glasses. Corros. Sci. 85, 258 (2014).CrossRefGoogle Scholar
Lang, X., Guo, H., Chen, L., and Kudo, A.: Novel nanoporous Au–Pd alloy with high catalytic activity and excellent electrochemical stability. J. Phys. Chem. C 114, 2600 (2010).CrossRefGoogle Scholar
Scaglione, F., Rizzi, P., Celegato, F., and Battezzati, L.: Synthesis of nanoporous gold by free corrosion of an amorphous precursor. J. Alloys Compd. 615, S142 (2014).CrossRefGoogle Scholar
Gebert, A., Buchholz, K., Leonhard, A., Mummert, K., Eckert, J., and Schultz, L.: Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Mater. Sci. Eng., A 267, 294 (1999).CrossRefGoogle Scholar
Mihaylov, L., Lyubenova, L., Gerdjikov, T., Nihtianova, D., and Spassov, T.: Selective dissolution of amorphous Zr–Cu–Ni–Al alloys. Corros. Sci. 94, 350 (2015).CrossRefGoogle Scholar
Mihailov, L., Redzheb, M., and Spassov, T.: Selective dissolution of amorphous and nanocrystalline Zr2Ni. Corros. Sci. 74, 308 (2013).CrossRefGoogle Scholar
Paschalidou, E.M., Scaglione, F., Gebert, A., Oswald, S., Rizzi, P., and Battezzati, L.: Partially and fully de-alloyed glassy ribbons based on Au: Application in methanol electro-oxidation studies. J. Alloys Compd. 667, 302 (2016).CrossRefGoogle Scholar
Fujita, T., Guan, P., McKenna, K., Lang, X., Hirata, A., Zhang, L., Tokunaga, T., Arai, S., Yamamoto, Y., Tanaka, N., Ishikawa, Y., Asao, N., Yamamoto, Y., Erlebacher, J., and Chen, M.: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775 (2012).CrossRefGoogle ScholarPubMed
Zhang, J., Liu, P., Ma, H., and Ding, Y.: Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C 111, 10382 (2007).CrossRefGoogle Scholar
Borkowska, Z., Tymosiak-Zielinska, A., and Shul, G.: Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim. Acta 49, 1209 (2004).CrossRefGoogle Scholar
Heli, H., Jafarian, M., Mahjani, M.G., and Gobal, F.: Electro-oxidation of methanol on copper in alkaline solution. Electrochim. Acta 49, 4999 (2004).CrossRefGoogle Scholar
Khouchaf, A., Takky, D., and El Mahi Chbihi, M.: Electrocatalytic oxidation of methanol on glassy carbon electrode modified by metal ions (copper and nickel) dispersed into polyaniline film. J. Mater. Sci. Chem. Eng. 4, 97 (2016).Google Scholar
Abd El Rehim, S.S., Hassan, H.H., Ibrahim, M.A.M., and Amin, M.A.: Electrochemical behaviour of a silver electrode in NaOH solutions. Monatsh. Chem. 129, 1103 (1998).Google Scholar
Wan, Y., Wang, X., Liu, S., Li, Y., Sun, H., and Wang, Q.: Effect of electrochemical factors on formation and reduction of silver oxides. Int. J. Electrochem. Sci. 8, 12837 (2013).Google Scholar
Jeong, M-C.: Voltammetric studies on the palladium oxides in alkaline media. J. Electrochem. Soc. 140, 1986 (1993).CrossRefGoogle Scholar
Grden, M., Lukaszewski, M., Jerkiewicz, G., and Czerwinski, A.: Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption. Electrochim. Acta 53, 7583 (2008).CrossRefGoogle Scholar
Assiongbon, K.A. and Roy, D.: Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques. Surf. Sci. 594, 99 (2005).CrossRefGoogle Scholar
Graf, M., Haensch, M., Carstens, J., Wittstock, G., and Weissmüller, J.: Electrocatalytic methanol oxidation with nanoporous gold: Microstructure and selectivity. Nanoscale 9, 17839 (2017).CrossRefGoogle ScholarPubMed
Supplementary material: File

Denis et al. supplementary material

Denis et al. supplementary material 1

Download Denis et al. supplementary material(File)
File 1.9 MB