Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T02:19:27.639Z Has data issue: false hasContentIssue false

Microstructure of nitrate polycrystals solidified under ultrasonic vibration

Published online by Cambridge University Press:  31 January 2011

Naoya Enomoto
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226, Japan
Yasushi Iimura
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226, Japan
Zenbe-e Nakagawa
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226, Japan
Get access

Abstract

Molten nitrates in the system (1 − x)NaNO3xBa(NO3)2 were solidified in the presence of a power ultrasound of 20 kHz. Their microstructures were compared with those of controlled samples which were solidified normally. Grain size in the controlled sample of monolithic NaNO3 (x = 0) was reduced by sonication. In the hypo- (x = 8 wt. %) and the hypereutectic (x = 28 wt. %) binary samples, the sonication completely eliminated the dendritic structure of the primary crystals and induced equiaxed particles of the primary phase. At eutectic (x = 18 wt. %), the sonication removed oriented structures of the eutectic lamellae. Several mechanisms of the microstructural modification were mentioned.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Asokan, T., J. Mater. Sci. Lett. 13, 343345 (1994).Google Scholar
2.Schmid, G. and Ehret, L., Z. Elektrochem. 43, 869 (1937) (in German).Google Scholar
3.Crawford, A. E., Metallurgia, March, 109–113 (1953).CrossRefGoogle Scholar
4.Hiedemann, E. A., J. Acoust. Soc. Am. 26 (5), 831842 (1954).CrossRefGoogle Scholar
5.Eskin, G. I., Ultrasonics Sonochemistry 2 (2), S137–141 (1995).CrossRefGoogle Scholar
6.Hori, Y. and Uezawa, I., J. Met. Soc. Jpn. 23 (3), 168172 (1959) (in Japanese).Google Scholar
7.Tomomasa, Y., Enomoto, N., Ohya, Y., and Nakagawa, Z., in Powder Preparation/Rapid Quenching, edited by Akashi, K., Ozaki, Y., Takeda, T., Inoue, A., Masumoto, T., and Suzuki, T. (Mater. Res. Soc. Symp. Int. Proc. 3, Pittsburgh, PA, 1989), pp. 107114.Google Scholar
8.Enomoto, N., Sung, T-H.. Nakagawa, Z., and Lee, S-C., J. Mater. Sci. 27, 52395243 (1992).Google Scholar
9.Enomoto, N., Katsumoto, M., and Nakagawa, Z., J. Ceram. Soc. Jpn. 102 (12), 11051111 (1994).CrossRefGoogle Scholar
10.Enomoto, N., Koyano, T., and Nakagawa, Z., Ultrasonics Sonochemistry 3 (2), 105109 (1996).Google Scholar
11.Chalmers, B., Principles of Solidification (John Wiley & Sons, Inc., New York, 1964).Google Scholar
12.Grugel, R. N., Hua, F., and Wang, T. G., J. Mater. Sci. Lett. 13, 14191421 (1994).CrossRefGoogle Scholar
13.Winchell, A. N. and Winchell, H., Characters of Artificial Inorganic Solid Substances (Academic Press, New York, 1964), p. 101.Google Scholar
14.Encyclopaedia Chimica (Kyoritsu Shuppan, Tokyo, Japan, 1964).Google Scholar
15.Handbook of Chemistry, 3rd ed. (Chem. Soc. Jpn., Maruzen, Tokyo, Japan, 1984).Google Scholar
16.Dibirov, M. A., Bochkov, M. M., Levina, L. N., and Mozagovoi, A. G., Inorg. Mater. 28 (5), 708710 (1992).Google Scholar
17.Richards, N. E., Brauner, E. J., and J. O'Bockris, M., Brit. J. Appl. Phys. 6, 387390 (1955).Google Scholar
18.Mason, T. J., Lorimer, J. P., and Bates, D. M., Ultrasonics 30 (1), 4042 (1992).CrossRefGoogle Scholar
19.Frederick, J. R., Ultrasonic Engineering (John Wiley & Sons, Inc., New York, 1965), p. 116.Google Scholar
20.Campbell, J., Int. Met. Rev. 1981 (2), 71108 (1981).Google Scholar