Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T03:29:54.719Z Has data issue: false hasContentIssue false

Nanoscale flow deformation of silicate glass ultrathin films for development of nano-patterned glass surfaces

Published online by Cambridge University Press:  03 March 2011

Shusaku Akiba
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Wakana Hara
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Shuhei Sato
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Akifumi Matsuda
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Atsushi Sasaki
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Mamoru Yoshimoto*
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
*
a)Address all correspondence to this author. e-mail: m.yoshimoto@msl.titech.ac.jp
Get access

Abstract

The nanoscale behavior of high-temperature flow deformation for silicate-based oxide glass ultrathin films was characterized with focus on forming a nano-patterned glass surface. The oxide glass thin films were deposited at room temperature by pulsed laser deposition onto the ultrasmooth sapphire substrates with 0.2-nm-high atomic steps. It was found from atomic force microscopy (AFM) measurements that the silicate ultrathin films (about 3 nm thick) started to deform at a temperature 50 °C lower than the glass transition point of the bulk glass. The glass thin films annealed at high temperatures exhibited the nano-stepped surface structure reflecting the sapphire substrate surface. By scanning the AFM tip on the as-deposited glass film in a contact mode and then thermal annealing the film, we could pattern the nano-stepped glass surface at a nanoscale.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chou, S.Y., Krauss, P.R. andRenstrom, P.J.: Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67 3114 (1995).CrossRefGoogle Scholar
2.Gourgon, C., Perret, C. andMicouin, G.: Electron beam photoresists for nanoimprint lithography. Microelectron. Eng. 61–62 385 (2002).CrossRefGoogle Scholar
3.Yu, Z., Chen, L., Wu, W., Ge, H. andChou, S.Y.: Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography. J. Vac. Sci. Technol. B 21 2089 (2003).CrossRefGoogle Scholar
4.Hock, M., Schäffer, E., Döll, W. andKleer, G.: Composite coating materials for the moulding of diffractive and refractive optical components of inorganic glasses. Surf. Coat. Technol. 163–164 689 (2003).CrossRefGoogle Scholar
5.Drake, J.M. andKlafter, J.: Dynamics of confined molecular systems. Phys. Today 43 46 (1990).CrossRefGoogle Scholar
6.Ellison, C.J. andTorkelson, J.M.: The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2 695 (2003).CrossRefGoogle ScholarPubMed
7.Pham, J.Q. andGreen, P.F.: The glass transition of thin film polymer/polymer blends: Interfacial interactions and confinement. J. Chem. Phys. 116 5801 (2002).CrossRefGoogle Scholar
8.Tate, R.S., Fryer, D.S., Pasqualini, S., Montague, M.F., de Pablo, J.J. andNealey, P.F.: Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates. J. Chem. Phys. 115 9982 (2001).CrossRefGoogle Scholar
9.Truskett, T.M. andGanesan, V.: Ideal glass transitions in thin films: An energy landscape perspective. J. Chem. Phys. 119 1897 (2003).CrossRefGoogle Scholar
10.Gelb, L.D., Gubbins, K.E., Radhakrishnan, R. andSliwinska-Bartkowiak, M.: Phase separation in confined systems. Rep. Prog. Phys. 62 1573 (1999).CrossRefGoogle Scholar
11.Dijikkamp, D., Venkatesan, T., Wu, X.D., Shaheen, S.A., Jisrawi, N., Min-Lee, Y.H., McLeen, W.L. andCroft, M.: Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material Appl. Phys. Lett. 51 619 (1987).CrossRefGoogle Scholar
12.Inam, A., Hegde, M.S., Wu, X.D., Venkatesan, T., England, P., Miceli, P.F., Chase, E.W., Chang, C.C., Tarascon, J.M. andWachtman, J.B.: As-deposited high Tc and Jc superconducting thin films made at low temperatures. Appl. Phys. Lett. 53 908 (1988).CrossRefGoogle Scholar
13.Koinuma, H., Nagata, H., Tsukahara, T., Gonda, S. andYoshimoto, M.: Ceramic layer epitaxy by pulsed laser deposition in an ultrahigh vacuum system. Appl. Phys. Lett. 58 2027 (1991).CrossRefGoogle Scholar
14.Yoshimoto, M., Maruta, H., Ohnishi, T., Sasaki, K. andKoinuma, H.: In situ determination of the terminating layer of La0.7Sr0.3MnO3 thin films using coaxial impact-collision ion scattering spectroscopy. Appl. Phys. Lett. 73, 187 (1998).CrossRefGoogle Scholar
15.Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R. andMiyamoto, A.: Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication. Appl. Phys. Lett. 67 2615 (1995).CrossRefGoogle Scholar
16.Maeda, T., Yoshimoto, M., Ohnishi, T., Lee, G-H. andKoinuma, H.: Orientation-defined molecular layer epitaxy of α Al2O3 thin films. J. Cryst. Growth 177 95 (1997).CrossRefGoogle Scholar
17.Lee, G-H., Yoshimoto, M. andKoinuma, H.: Self-assembled island formation of LiNbO3 by pulsed laser deposition on Al2O3 substrate. Appl. Surf. Sci. 127/129 393 (1998).CrossRefGoogle Scholar
18.Yoshimoto, M., Yoshida, K., Maruta, H., Hishitani, Y., Koinuma, H., Nishio, S., Kakihana, M. andTachibana, T.: Epitaxial diamond growth on sapphire in an oxidizing environment. Nature 399 340 (1999).CrossRefGoogle Scholar
19.Yoshida, K., Yoshimoto, M., Sasaki, K., Ohnisi, T., Ushiki, T., Hitomi, J., Yamamoto, S. andShigeno, M.: Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate. Biophys. J. 74 1654 (1998).CrossRefGoogle ScholarPubMed