Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T22:16:19.591Z Has data issue: false hasContentIssue false

Nitrogen-induced carbon nanobells and their properties

Published online by Cambridge University Press:  03 March 2011

E.G. Wang*
Affiliation:
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: egwang@aphy.iphy.ac.cn
Get access

Abstract

Polymerized nitrogen-containing carbon nanobell structures were fabricated by microwave plasma-assisted chemical vapor deposition using the mixture of source gases: methane, nitrogen, and hydrogen. The nanobells with one end sealed and another open contained a nitrogen concentration of about 1–10 at.%. A first-principles calculation was performed to understand the nitrogen effect on the formation of a bell structure. Based on the growth mechanism, a continual nanojunction formed between nanobell and nanotube. The unique structures with a weak connection between two adjacent nanobells were useful for producing short nanotubes several tens of nanometers in length and diameter. In addition, the short length and open edges at the outside surfaces of nanobells also benefited the electron field emission, energy storage, and chemical reactivity.

Type
Reviews
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).CrossRefGoogle Scholar
3.Pan, Z.W., Dai, Z.R., Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).CrossRefGoogle ScholarPubMed
4.Bai, X.D., Gao, P.X., Wang, Z.L., Wang, E.G.: Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 82, 4806 (2003).CrossRefGoogle Scholar
5.Zhang, G.Y., Jiang, X., Wang, E.G.: Tubular graphite cones. Science 300, 472 (2003).CrossRefGoogle ScholarPubMed
6.Zhang, G.Y., Bai, X.D., Wang, E.G., Guo, Y., Guo, W.: Monochiral tubular graphite cones formed by radial layer-by-layer growth. Phys. Rev. B 71, 113411 (2005).CrossRefGoogle Scholar
7.Ma, X.C., Wang, E.G., Zhou, W., Jefferson, D.A., Chen, J., Deng, S.Z., Xu, N.S., Yuan, J.: Polymerized carbon nanobells and their field-emission properties. Appl. Phys. Lett. 75, 3105 (1999).CrossRefGoogle Scholar
8.Zhang, G.Y., Ma, X.C., Zhong, D.Y., Wang, E.G.: Polymerized carbon nitride nanobells. J. Appl. Phys. 91, 9324 (2002).CrossRefGoogle Scholar
9.Zhang, G.Y., Jiang, X., Wang, E.G.: Self-assembly of carbon nanohelices: Characteristics and field electron-emission properties. Appl. Phys. Lett. 84, 2646 (2004).CrossRefGoogle Scholar
10.Hu, J., Min, O., Yang, P., Lieber, C.M.: Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399, 48 (1999).CrossRefGoogle Scholar
11.Yao, Z., Postma, H.W.Ch., Balents, L., Dekker, C.: Carbon nanotube intramolecular junctions. Nature 402, 273 (1999).CrossRefGoogle Scholar
12.Ma, X., Wang, E.G.: CNx′ carbon nanotube junctions synthesized by microwave chemical vapor deposition. Appl. Phys. Lett. 78, 978 (2001).CrossRefGoogle Scholar
13.Guo, J.D., Zi, C.Y., Bai, X.D., Wang, E.G.: Boron carbonitride nanojunctions. Appl. Phys. Lett. 80, 124 (2002).CrossRefGoogle Scholar
14.Zhong, D.Y., Liu, S., Zhang, G.Y., Wang, E.G.: Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission. J. Appl. Phys. 89, 5939 (2001).CrossRefGoogle Scholar
15.Zhi, C.Y., Guo, J.D., Bai, X.D., Wang, E.G.: Adjustable boron carbonitride nanotubes. J. Appl. Phys. 91, 5325 (2002).CrossRefGoogle Scholar
16.Rao, C.N.R., Sen, R., Sattishkumar, B.C., Govindaraj, A.: Large aligned-nanotube bundles from ferrocene pyrolysis. J. Chem. Soc., Chem. Commun. 15, 1525 (1998).CrossRefGoogle Scholar
17.Zhang, G.Y., Wang, E.G.: Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl. Phys. Lett. 82, 1926 (2003).CrossRefGoogle Scholar
18.Sen, R., Satishkumar, B.C., Govindaraj, A., Harikumar, K.R., Renganathan, M.K., Rao, C.N.R.: Nitrogen-containing carbon nanotubes. J. Mater. Chem. 12, 2335 (1997).CrossRefGoogle Scholar
19.Sen, R., Satishkumar, B.C., Govindaraj, A., Harikumar, K.R., Raina, G., Zhang, J.P., Cheetham, A.K., Rao, C.N.R.: B–C–N, C–N, and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts. Chem. Phys. Lett. 287, 671 (1998).CrossRefGoogle Scholar
20.Terrones, M., Redlich, Ph., Grobert, N., Trasobares, S., Hsu, W.K., Terrones, H., Zhu, Y.Q., Hare, J.P., Cheetham, A.K., Ruhle, M., Kroto, H.W., Walton, D.R.M.: Carbon nitride nanocomposites: Formation of aligned CxNy nanofibers. Adv. Mater. 11, 655 (1999).3.0.CO;2-6>CrossRefGoogle Scholar
21.Terrones, M., Terrones, H., Grobert, N., Hsu, W.K., Zhu, Y.Q., Kroto, H.W., Walton, D.R.M., Kohler-Redlich, Ph., Ruhle, M., Zhang, J.P., Cheetham, A.K.: Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl. Phys. Lett. 75, 3932 (1999).CrossRefGoogle Scholar
22.Terrones, M., Grobert, N., Terrones, H.: Synthetic routes to nanoscale BxCyNz architectures. Carbon 40, 1665 (2002) and references therein.CrossRefGoogle Scholar
23.Ma, X.C., Wang, E.G., Tilley, R.D., Jefferson, D.A., Zhou, W.: Size-controlled short nanobells: Growth and formation mechanism. Appl. Phys. Lett. 77, 4136 (2000).CrossRefGoogle Scholar
24.Koziol, K., Shaffer, M., Windle, A.: Three-dimensional internal order in multiwall carbon nanotubes grown by chemical vapor deposition. Adv. Mater. 17, 760 (2005).CrossRefGoogle Scholar
25.Liang, E.J., Ding, P., Zhang, H.R., Guo, X.Y., Du, Z.L.: Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine. Diamond Relat. Mater. 13, 69 (2004).CrossRefGoogle Scholar
26.Lin, C.H., Chang, H.L., Hsu, C.M., Lo, A.Y., Kuo, C.T.: The role of nitrogen in carbon nanotube formation. Diamond Relat. Mater. 12, 1851 (2003).CrossRefGoogle Scholar
27.Lee, J.Y., Lee, B.S.: Nitrogen induced structure control of vertically aligned carbon nanotubes synthesized by microwave plasma enhanced chemical vapor deposition. Thin Solid Films 418, 85 (2002).CrossRefGoogle Scholar
28.Kurt, R., Klinke, C., Bonard, J-M., Kern, K., Karimi, A.: Tailoring the diameter of decorated C–N nanotubes by temperature variations using HF-CVD. Carbon 39, 2163 (2001).CrossRefGoogle Scholar
29.Zhao, G.L., Callaway, J.: Phonons and superconductivity in YBa2Cu3O7. Phys. Rev. B. 50, 9511 (1994).CrossRefGoogle ScholarPubMed
30.Zhao, G.L., Bagayoko, D., Wang, E.G.: Electronic structure of short carbon nanobells. Mod. Phys. Lett. B. 17, 375 (2003).CrossRefGoogle Scholar
31.Kuttel, O.M., Groening, O., Emmenegger, C., Schlapbach, L.: Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma. Appl. Phys. Lett. 73, 2113 (1998).CrossRefGoogle Scholar
32.Jo, S.H., Wang, D.Z., Huang, J.Y., Li, W.Z., Kempa, K., Ren, Z.F.: Field emission of carbon nanotubes grown on carbon cloth. Appl. Phys. Lett. 85, 810 (2004).CrossRefGoogle Scholar
33.Bonard, J-M., Kurt, R., Klinke, C.: Influence of the deposition conditions on the field-emission properties of patterned nitrogenated carbon nanotube films. Chem. Phys. Lett. 343, 21 (2001).CrossRefGoogle Scholar
34.Bonard, J-M., Kind, H., Stockli, T., Nilsson, L-O.: Field emission from carbon nanotubes: The first five years. Solid-State Electron. 45, 893 (2001).CrossRefGoogle Scholar
35.Chambers, A., Park, C., Baker, R.T.K., Rodriguez, N.M.: Hydrogen storage in graphite nanofibers. J. Phys. Chem. B 102, 4253 (1998).CrossRefGoogle Scholar
36.Liu, C., Fan, Y.Y., Cong, H.T., Cheng, H.M., Dresselhuas, M.S.: Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286, 1127 (1999).CrossRefGoogle ScholarPubMed
37.Dillon, A.C., Johns, K.M., Bekkedahl, T.A., Klang, C.H., Bethune, D.S., Heben, M.J.: Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377 (1997).CrossRefGoogle Scholar
38.Ye, Y., Ahm, C.C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., Smalley, R.E.: Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307 (1999).CrossRefGoogle Scholar
39.Chen, P., Wu, X., Lin, J., Tan, K.L.: High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91 (1999).CrossRefGoogle ScholarPubMed
40.Bai, X.D., Zhong, D.Y., Zhang, G.Y., Ma, X.C., Liu, S., Wang, E.G., Chen, Y., Shaw, D.: Hydrogen storage in carbon nitride nanobells. Appl. Phys. Lett. 79, 1552 (2001).CrossRefGoogle Scholar
41.Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590 (1995).CrossRefGoogle Scholar
42.Winter, M., Besenhard, J.Q., Spahr, M.E., Novak, P.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725 (1998).3.0.CO;2-Z>CrossRefGoogle Scholar
43.Zhong, D.Y., Zhang, G.Y., Liu, S., Wang, E.G., Wang, Q., Li, H., Huang, X.J.: Lithium storage in polymerized carbon nitride nanobells. Appl. Phys. Lett. 79, 3500 (2001).CrossRefGoogle Scholar
44.Abedinov, N., Popov, C., Yordanov, Z., Rangelow, I.W., Kulisch, W.: Investigations of the sorption behaviour of amorphous nitrogen-rich carbon nitride films as sensitive layers for cantilever-based chemical sensors. Appl. Phys. A. 79, 531 (2004).CrossRefGoogle Scholar
45.Zambov, L.M., Popov, C., Abedinov, N., Plass, M.F., Kulisch, W., Gotszalk, T., Grabiec, P., Rangelow, I.W., Kassing, R.: Gas-sensitive properties of nitrogen-rich carbon nitride films. Adv. Mater. 12, 656 (2000).3.0.CO;2-S>CrossRefGoogle Scholar