Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T02:56:53.006Z Has data issue: false hasContentIssue false

A novel form of carbon nitrides: Well-aligned carbon nitride nanotubes and their characterization

Published online by Cambridge University Press:  31 January 2011

S. L. Sung
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
S. H. Tsai
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
X. W. Liu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
H. C. Shih*
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
*
a)Address all correspondence to this author.
Get access

Abstract

Well-aligned carbon nitride nanotubes were prepared with a porous alumina membrane as a template when using electron cyclotron resonance (ECR) plasma in a mixture of C2H2 and N2 as the precursor with an applied negative bias to the graphite sample holder. The hollow structure and good alignment of the nanotubes were verified by field-emission scanning electron microscopy. Carbon nitride nanotubes were transparent when viewed by transmission electron microscopy, which showed that the nanotubes were hollow with a diameter of about 250 nm and a length of about 50–80 μm. The amorphous nature of the nanotubes was confirmed by the absence of crystalline phases arising from selected-area diffraction patterns. Both Auger electron microscopy and x-ray photoelectron spectroscopy spectra indicated that these nanotubes are composed of nitrogen and carbon. The total N/C ratio is 0.72, which is considerably higher than other forms of carbon nitrides. No free-carbon phase was observed in the amorphous carbon nitride nanotubes. The absorption bands between 1250 and 1750 cm−1 in Fourier transform infrared spectroscopy provided direct evidence for nitrogen atoms, effectively incorporated within the amorphous carbon network. Such growth of well-aligned carbon nitride nanotubes can be controlled by tuning the ECR plasma conditions and the applied negative voltage to the alumina template.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brodie, I. and Spindt, C.A., Adv. Electron. Electron Phys. 83, 1 (1992).CrossRefGoogle Scholar
2.Brodies, I. and Schwoebel, P.R., Proc. IEEE 82, 1006 (1994).CrossRefGoogle Scholar
3.Jaskie, J.E., MRS Bull. 21(3), 59 (1996).CrossRefGoogle Scholar
4.Geis, M.W., Gregory, J.A., and Pate, B.B., IEEE Trans. Electron Devices 38, 619 (1991).CrossRefGoogle Scholar
5.Geis, M.W., Twichell, J.C., Macaulay, J., and Okano, K., Appl. Phys. Lett. 67, 1328 (1995).CrossRefGoogle Scholar
6.Xu, N.S., Latham, R.V., and Tzeng, Y., Electron. Lett. 29, 1596 (1993).CrossRefGoogle Scholar
7.Okano, K., Koizumi, S., Silva, S.R.P, and Amaratunga, G.A.J, Nature 381, 140 (1996).CrossRefGoogle Scholar
8.Geis, M.W., Twichell, J.C., Efromow, N.N., Krohn, K., and Lyszczarz, T.M., Appl. Phys. Lett. 68, 2294 (1996).CrossRefGoogle Scholar
9.Shin, I.H. and Lee, T.D., J. Vac. Sci. Technol. B 17, 690 (1999).CrossRefGoogle Scholar
10.Amaratunga, G.A.J and Silva, S.R.P, Appl. Phys. Lett. 68, 2529 (1996).CrossRefGoogle Scholar
11.Himpsel, F.J., Knapp, J.A., Van Vechten, J.A., and Eastman, D.E., Phys. Rev. B 20, 624 (1979).CrossRefGoogle Scholar
12.Pate, B.B., Surf. Sci. 165, 83 (1986).CrossRefGoogle Scholar
13.Amaratunga, G.A.J and Silva, S.R.P, J. Non-Cryst. Solids 198–200, 611 (1996).CrossRefGoogle Scholar
14.Givargizov, E.I., Zhirnov, V.V., Kuznestov, A.V., and Plekhanov, P.S., J. Vac. Sci. Technol. B 74, 2030 (1996).CrossRefGoogle Scholar
15.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
16.Rinzler, A.G., Hafner, J.H., Nikolaev, P., Lou, L., Kim, S.G., Tománek, D., Nordlander, P., Colbert, D.T., and Smalley, R.E., Science 268, 1550 (1995).CrossRefGoogle Scholar
17.de Heer, W.A., Châtelain, A., and Ugarte, D., Science 270, 1179 (1995).CrossRefGoogle Scholar
18.de Heer, W.A., Bonard, J-M., Fauth, K., Châtelain, A., Forró, L., and Ugarte, D., Adv. Mater. 9, 87 (1997).CrossRefGoogle Scholar
19.Gulyaev, Yu.V., Chemozatonskii, L.A., Kosakovskaja, Z.Ja., Sinitsyn, N.I., Torgashov, G.V., and Zakharchenko, Yu.F., J. Vac. Sci. Technol. B 13, 435 (1995).CrossRefGoogle Scholar
20.Tsai, T.G., Ph.D. Thesis of NTHU (1997).Google Scholar
21.Tsai, S.H., Chao, C.W., Lee, C.L., Liu, X.W., Lin, I.N., and Shih, H.C., Electrochem. Solid-State Lett. 2, 247 (1999).CrossRefGoogle Scholar
22.Sung, S.L., Tsai, S.H., Tseng, C.H., Chiang, F.K., Liu, X.W., and Shih, H.C., Appl. Phys. Lett. 74, 197 (1999).CrossRefGoogle Scholar
23.Suenaga, K., Johansson, M.P., Hellgren, N., Broitman, E., Wallenberg, L.R., Colliex, C., Sundgren, J-E., and Hultman, L., Chem. Phys. Lett. 300, 695 (1999).CrossRefGoogle Scholar
24.Terrones, M., Redlich, P., Grobert, N., Trasobares, S., Hsu, W-K., Terrones, H., Zhu, Y-Q., Hare, J.P., Reeves, C.L., Cheetham, A.K., Rühle, M., Kroto, H.W., and Walton, D.R.M, Adv. Mater. 11, 655 (1999).3.0.CO;2-6>CrossRefGoogle Scholar
25.Silva, S.R.P, Amaratunga, G.A.J, and Barnes, J.R., Appl. Phys. Lett. 71, 1477 (1997).CrossRefGoogle Scholar
26.Ebbesen, T.W. and Ajayan, P.M., Nature 358, 220 (1992).CrossRefGoogle Scholar
27.Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Chapelle, M.L., Lefrant, S., Deniard, P., Lee, R., and Fischer, J.E., Nature 388, 756 (1997).CrossRefGoogle Scholar
28.Endo, M. and Kroto, H.W., J. Phys. Chem. 96, 6941 (1992).CrossRefGoogle Scholar
29.Hsu, W.K., Terrones, M., Hare, J.P., Terrones, H., Kroto, H.W., and Walton, D.R.M, Chem. Phys. Lett. 262, 161 (1996).CrossRefGoogle Scholar
30.de Heer, W.A., Bacsa, W.S., Châtelain, A., Gerfin, T., Humphrey-Baker, R., Forro, L., and Ugarte, D., Science 268, 845 (1995).CrossRefGoogle Scholar
31.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
32.Terrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordatos, K., Hsu, W.K., Hare, J.P., Townsend, P.D., Prassides, K., Cheetham, A.K., Kroto, H.W., and Walton, D.R.M, Nature 388, 52 (1997).CrossRefGoogle Scholar
33.Kusunoki, M., Rokkaku, M., and Suzuki, T., Appl. Phys. Lett. 71, 2620 (1997).CrossRefGoogle Scholar
34.Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., and Provencio, P.N., Science 282, 1105 (1998).CrossRefGoogle Scholar
35.Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., and Dai, H.J., Science 283, 512 (1999).CrossRefGoogle Scholar
36.Tsai, S.H., Chao, C.W., Lee, C.L., and Shih, H.C., Appl. Phys. Lett. 74, 3462 (1999).CrossRefGoogle Scholar
37.Heilmann, A., Jutzi, P., Klipp, A., Kreibig, U., Neuendorf, R., Sawitowski, T., and Schmid, G., Adv. Mater. 10, 398 (1998).3.0.CO;2-6>CrossRefGoogle Scholar
38.Tsai, T.G., Chao, K.J., Guo, X.J., Sung, S.L., Wu, C.N., Wang, Y.L., and Shih, H.C., Adv. Mater. 9, 1154 (1997).CrossRefGoogle Scholar
39.Jessensky, O., Müller, F., and Gele, U., Appl. Phys. Lett. 72, 1173 (1998).CrossRefGoogle Scholar
40.Wagner, C.D., Davis, L.E., Gale, L.H., Raymond, R.H., Taylor, J.A., and Zeller, M.V., Surf. Interface Anal. 3, 211 (1981).CrossRefGoogle Scholar
41.Casanovas, J., Ricart, J.M., Rubio, J., Illas, F., and Jiménez-Mateos, J.M., J. Am. Chem. Soc. 118, 8071 (1996).CrossRefGoogle Scholar
42.Kawaguchi, M., Adv. Mater. 9, 615 (1997).CrossRefGoogle Scholar
43.Marton, D., Boyd, K.J., Al-Bayati, A.H., Todorov, S.S., and Rabalais, J.W., Phys. Rev. Lett. 73, 118 (1994).CrossRefGoogle Scholar
44.Barber, M., Connor, J.A., Guest, M.F., Hillier, I.H., Schwarz, M., and Stacey, M., J. Chem. Soc. Faraday Trans. 2 69, 551 (1973).CrossRefGoogle Scholar
45.Gelius, U., Heden, R.F., Hedman, J., Lindberg, B.J., Manne, R., Nordberg, R., Nordling, R., and Siegbahn, K., Phys. Scr. 2, 70 (1970).CrossRefGoogle Scholar
46.Kaufman, J.H., Metin, S., and Saperstein, D.D., Phys. Rev. B 39, 13053 (1989).CrossRefGoogle Scholar
47.Vien, D.L., Colthup, N.B., Fateley, W.G., and Grasselli, J.G., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, San Diego, CA, 1991).Google Scholar