Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T17:49:49.799Z Has data issue: false hasContentIssue false

Partially ionized beam deposition of oriented films

Published online by Cambridge University Press:  31 January 2011

A. S. Yapsir
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180
L. You
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180
T. -M. Lu
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180
M. Madden
Affiliation:
Intel Corporation, Santa Clara, California 95051
Get access

Abstract

The microstructure of Al films deposited on SiO2 using the partially ionized beam (PIB) deposition technique is studied. It is shown that by employing less than 1% ions (ion-to-atom ratio) derived from the evaporated material and about 1–2 kV bias voltage at the substrate during deposition, one can grow highly (111) oriented Al films at room temperature. For a fixed bias potential, the value of the ion-to-atom ratio to achieve the optimum orientation effect is determined. At the optimum condition for the (111) preferred orientation growth, no significant enhancement in the grain size is observed. It is also found that a drastic reduction in the degree of the preferred orientation occurs when the films are deposited at a substrate temperature greater than 150 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Harper, J.M. E., Cuomo, J.J., Gambino, R.J., and Kaufman, H.R., in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelly, R. (Elsevier, Amsterdam, 1984), p. 127; J.E. Green, Solid State Technology 30 (4), 115 (1987).Google Scholar
2Itoh, T., Nakamura, T., Muromachi, M., and Sugiyama, T., Jpn. J. Appl. Phys. 15, 1145 (1976); T. Itoh and T. Nakmura, ibid., 16, 553 (1977).CrossRefGoogle Scholar
3Narusawa, T., Shimuzu, S., and Komiya, S., J. Vac. Sci. Technol. 16, 366 (1979).CrossRefGoogle Scholar
4Takagi, T., J. Vac. Sci. Technol. A2, 382 (1984); and references therein.CrossRefGoogle Scholar
5Rockett, A., Barnett, A.S., and Green, J.E., J. Vac. Sci. Technol. B2, 306 (1984).CrossRefGoogle Scholar
6Hassan, M.A., Barnett, A.S., Sundgren, J.E., and Green, J.E., J. Vac. Sci. Technol. A5, 1883 (1987).CrossRefGoogle Scholar
7Mei, S.-N. and Lu, T.-M., J. Vac. Sci. Technol. A6, 9 (1988).CrossRefGoogle Scholar
8Yamada, I., Inokawa, H., and Takagi, T., J. Appl. Phys. 56, 2746 (1984).CrossRefGoogle Scholar
9Choi, C.-H., Harper, R.A., Yapsir, A.S., and Lu, T.-M., Appl. Phys. Lett. 51, 1992 (1988); C.-H. Choi, R. Ramayanan, S.-N. Mei, and T.-M. Lu, Mat. Res. Soc. Symp. Proc. 93, 267 (1987).CrossRefGoogle Scholar
10Yamada, I. and Takagi, T., Thin Solid Films 80, 105 (1980).CrossRefGoogle Scholar
11Kuiper, A., Thomas, G., and Schouter, W., J. Cryst. Growth 51, 17 (1981).CrossRefGoogle Scholar
12Hagena, O. F., Z. Physik D-Atoms, Molecules and Clusters 4, 291 (1987).CrossRefGoogle Scholar
13Mei, S.-N., Yang, S.-N., Wong, J., Choi, C.-H., and Lu, T.-M., J. Crystal Growth 87, 357 (1988).CrossRefGoogle Scholar
14Hawley, J. and Ficalora, P. J., J. Appl. Phys. 63, 979, 2884 (1988).CrossRefGoogle Scholar
15Skelly, D. W., Lu, T.-M., and Woodruff, D. W., in Metallization Techniques in VLSI, edited by Einspruch, N. G., Cohen, S. S., and Gildenblat, G. S., VLSI Electronics (Academic Press, Orlando, FL, 1987), Vol. 15, p. 101.CrossRefGoogle Scholar
16Yapsir, A. S., Bai, P., and Lu, T.-M., Appl. Phys. Lett. 53, 905 (1988).CrossRefGoogle Scholar
17Yapsir, A.S., Lu, T.-M., and Lanford, W. A., Appl. Phys. Lett. 51, 1992 (1988).Google Scholar
18Mei, S.-N., Lu, T.-M., and Roberts, S., IEEE Electron Device Lett. EDL-8, 503 (1987); S.-N. Mei, S.-N. Yang, T.-M. Lu, and S. Roberts, J. Vac. Sci. Technol. (in press).CrossRefGoogle Scholar
19Bai, P., Lu, T.-M., and Roberts, S., Proc. IEEE VLSI Multilevel Interconnection Conference (Electron Device Society, New York, 1988), p. 382.Google Scholar
20Selvaraj, R., Yang, S.-N., McDonald, J. F., and Lu, T.-M., Proc. IEEE VLSI Multilevel Interconnection Conference (Electron Device Society, New York, 1987), p. 440.Google Scholar
21Kern, W. and Puotlineu, D. A., RCA Rev. 31, 187 (1970).Google Scholar
22Witt, F. and Vook, R. W., J. Appl. Phys. 39, (2773) 1968.CrossRefGoogle Scholar
23Huang, T. C., Lim, G., Parmigiani, F., and Kay, E., J. Vac. Sci. Technol. A3, 2161 (1985).CrossRefGoogle Scholar
24Yamada, I., Inokawa, H., Fukushima, K., and Takagi, T., Nucl. Inst. Meth. Phys. B7/8, 900 (1985).CrossRefGoogle Scholar
25Spencer, E. G., Schmidt, P. H., Joy, D. C., and Sansalone, F. J., Appl. Phys. Lett. 29, 118 (1976).CrossRefGoogle Scholar
26Yu, L. S., Harper, J. M. E., Cuomo, J. J., and Smith, D. A., Appl. Phys. Lett. 47, 932 (1985).CrossRefGoogle Scholar
27Park, Y. H., Roessle, P., Majewski, E., and Smith, J. F., J. Vac. Sci. Technol. A3, 2308 (1985).CrossRefGoogle Scholar
28Madden, M. (unpublished research).Google Scholar
29Vaidya, S., Sheng, T.-T., and Sinha, A. K., Appl. Phys. Letter. 36, 464 (1980).CrossRefGoogle Scholar
30Learn, A. J., Appl. Phys. Lett. 19, 292 (1971).CrossRefGoogle Scholar