Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T01:29:57.308Z Has data issue: false hasContentIssue false

Phenomenological analysis of densification mechanism during spark plasma sintering of MgAl2O4

Published online by Cambridge University Press:  31 January 2011

Guillaume Bernard-Granger*
Affiliation:
Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR CNRS/Saint-Gobain 3080, Saint-Gobain C.R.E.E., 84306 Cavaillon Cedex, France
Nassira Benameur
Affiliation:
Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR CNRS/Saint-Gobain 3080, Saint-Gobain C.R.E.E., 84306 Cavaillon Cedex, France
Ahmed Addad
Affiliation:
Laboratoire de Structure et Propriétés de l’Etat Solide, UMR CNRS 8008, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France
Mats Nygren
Affiliation:
Arrhenius Laboratory, University of Stockholm, 10691 Stockholm, Sweden
Sylvain Deville
Affiliation:
Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR CNRS/Saint-Gobain 3080, Saint-Gobain C.R.E.E., 84306 Cavaillon Cedex, France
*
a) Address all correspondence to this author. e-mail: guillaume.bernard-granger@saint-gobain.com
Get access

Abstract

Spark plasma sintering (SPS) of MgAl2O4 powder was investigated at temperatures between 1200 and 1300 °C. A significant grain growth was observed during densification. The densification rate always exhibits at least one strong minimum, and resumes after an incubation period. Transmission electron microscopy investigations performed on sintered samples never revealed extensive dislocation activity in the elemental grains. The densification mechanism involved during SPS was determined by anisothermal (investigation of the heating stage of a SPS run) and isothermal methods (investigation at given soak temperatures). Grain-boundary sliding, accommodated by an in-series {interface-reaction/lattice diffusion of the O2 anions} mechanism controlled by the interface-reaction step, governs densification. The zero-densification-rate period, detected for all soak temperatures, arise from the difficulty of annealing vacancies, necessary for the densification to proceed. The detection of atomic ledges at grain boundaries and the modification of the stoichiometry of spinel during SPS could be related to the difficulty to anneal vacancies at temperature soaks.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Harris, D.C.: History of development of polycrystalline optical spinel in the U.S. Proc. SPIE 5786, 1 (2005).Google Scholar
2Mroz, T.J., Hartnett, T.M., Wahl, J.M., Goldman, L.M., Kirsch, J., and Lindberg, W.R.: Recent advances in spinel optical ceramics. Proc. SPIE 5786, 64 (2005).CrossRefGoogle Scholar
3Roy, W.D.: Hot-pressed MgAl2O4 for ultraviolet (UV), visible, and infrared (IR) optical requirements. Proc. SPIE 297, 13 (1981).CrossRefGoogle Scholar
4Baudin, C., Martinez, R., and Pena, P.: High-temperature mechanical behavior of stoichiometric magnesium spinel. J. Am. Ceram. Soc. 78, 1857 (1995).CrossRefGoogle Scholar
5Krell, A.: Transparent polycrystalline sintered ceramic of cubic crystal structure. U.S. Patent No. 7 247 589 B2 (2007).Google Scholar
6Krell, A. and Strassburger, E.: Ballistic strength of opaque and transparent armors. Am. Ceram. Soc. Bull. 86, 9201 (2007).Google Scholar
7Groza, J.R., Curtis, J.D., and Kraämer, M.: Field-assisted sintering of nanocrystalline titanium nitride. J. Am. Ceram. Soc. 83, 1281 (2000).CrossRefGoogle Scholar
8Shen, Z., Johnsson, M., Zhao, Z., and Nygren, M.: Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85, 1921 (2002).CrossRefGoogle Scholar
9Kim, B.N., Hiraga, K., Morita, K., and Yoshida, H.: Spark plasma sintering of transparent alumina. Scr. Mater. 57, 607 (2007).CrossRefGoogle Scholar
10Suganuma, M., Kitagawa, Y., Wada, S., and Murayama, N.: Pulsed electric current sintering of silicon nitride. J. Am. Ceram. Soc. 86, 387 (2003).CrossRefGoogle Scholar
11Bernard-Granger, G. and Guizard, C.: Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater. 55, 3493 (2007).CrossRefGoogle Scholar
12Bangchao, Y., Jiawen, J., and Yican, Z.: Spark-plasma sintering the 8-mol% yttria-stabilized zirconia electrolyte. J. Mater. Sci. Lett. 39, 6863 (2004).Google Scholar
13Yamamoto, T., Kitaura, H., Kodera, Y., Ishii, T., Ohyanagi, M., and Munir, Z.A.: Consolidation of nanostructured b-SiC by spark plasma sintering. J. Am. Ceram. Soc. 87, 1436 (2004).CrossRefGoogle Scholar
14Frage, N., Cohen, S., Meir, S., Kalabukhov, S., and Dariel, M.P.: Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel. J. Mater. Sci. 42, 3273 (2007).CrossRefGoogle Scholar
15Vanmeensel, K., Laptev, A., Hennicke, J., Vleugels, J., and Biest, O. Van der: Modelling of the temperature distribution during field assisted sintering. Acta Mater. 53, 4379 (2005).CrossRefGoogle Scholar
16Cappellen, E. Van and Doukhan, J.C.: Quantitative transmission x-ray microanalysis of ionic compounds. Ultramicroscopy 53, 343 (1994).CrossRefGoogle Scholar
17Bernard-Granger, G., Guizard, C., and Addad, A.: Influence of co-doping on the sintering path and on the optical properties of a submicronic alumina material. J. Am. Ceram. Soc. 91, 1703 (2008).CrossRefGoogle Scholar
18Brook, R.J., Gilbert, E., Hind, D., and Vieira, J.M.: Sintering– Theory and Practice, edited by Kolar, D., Pejovnik, S., and Ristic, M.M. (Elsevier, Amsterdam, 1982), p. 585.Google Scholar
19Coble, R.L.: Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J. Appl. Phys. 41, 4798 (1970).CrossRefGoogle Scholar
20Mukherjee, A.K., Bird, J.E., and Dorn, J.E.: Experimental correlations for high-temperature creep. Trans. ASM 62, 155 (1969).Google Scholar
21Bernard-Granger, G. and Guizard, C.: Densification mechanism involved during spark plasma sintering of a co-doped a-alumina material. I: Formal sintering analysis. J. Mater. Res. 24(1), 179 (2009).CrossRefGoogle Scholar
22White, K.W. and Kelkar, G.P.: Fracture mechanisms of a coarse-grained, transparent MgAl2O4 at elevated temperatures. J. Am. Ceram. Soc. 75, 3440 (1992).CrossRefGoogle Scholar
23Ting, C.J. and Lu, H.Y.: Hot pressing of magnesium aluminate spinel: I. Kinetics and densification mechanism. Acta Mater. 47, 817 (1999).CrossRefGoogle Scholar
24Panda, P.C., Raj, R., and Morgan, P.E.D.: Superplastic deformation in fine-grained MgO 2A12O3 spinel. J. Am. Ceram. Soc. 68, 522 (1985).CrossRefGoogle Scholar
25Morita, K., Hiraga, K., Kim, B.N., Suzuki, T.S., and Sakka, Y.: Strain softening and hardening during superplastic-like flow in a fine-grained MgAl2O4 spinel polycrystal. J. Am. Ceram. Soc. 87, 1102 (2004).CrossRefGoogle Scholar
26Ashby, M.F. and Verrall, R.A.: Diffusion-accommodated flow and superplasticity. Acta Metall. 21, 149 (1973).CrossRefGoogle Scholar
27Burton, B.: The characteristic equation for superplastic flow. Philos. Mag. A 48, L9 (1983).CrossRefGoogle Scholar
28Reddy, K.P.R. and Cooper, A.R.: Oxygen diffusion in magnesium aluminate spinel. J. Am. Ceram. Soc. 64, 368 (1981).CrossRefGoogle Scholar
29Ando, K. and Oishi, Y.: Effect of ratio of surface area to volume on self-diffusion coefficients determined for crushed MgO–Al2O3 spinels. J. Am. Ceram. Soc. 66, C131 (1983).CrossRefGoogle Scholar
30Ting, C.J. and Lu, H.Y.: Defect reactions and the controlling mechanism in the sintering of magnesium aluminate spinel. J. Am. Ceram. Soc. 82, 841 (1999).CrossRefGoogle Scholar
31Liermann, H.P. and Ganguly, J.: Diffusion kinetics of Fe2+ and Mg in aluminous spinel. Experimental determination and applications. Geochim. Cosmochim. Acta 66, 2903 (2002).CrossRefGoogle Scholar
32Martinelli, J.R., Sonder, E., Weeks, R.A., and Zuhr, R.A.: Mobility of cations in magnesium aluminate spinel. Phys. Rev. B 33, 5698 (1986).CrossRefGoogle ScholarPubMed
33Watson, E.B. and Price, J.D.: Kinetics of the reaction MgO + Al2O3 MgAl2O4 and Mg–Al interdiffusion in spinel at 1200 to 2000C and 1.0 to 4.0 GPa. Geochim. Cosmochim. Acta 66, 2123 (2002).CrossRefGoogle Scholar
34Murphy, S.T., Uberuaga, B.P., Ball, J.B., Cleave, A.R., Sickafus, K.E., Smith, R., and Grimes, R.W.: Cation diffusion in magnesium aluminate spinel. Solid State Ionics (2008, Doi: 10.1016/j.ssi.2008.10.013).Google Scholar
35Kliever, K.L. and Koehler, J.S.: Space charge in ionic crystals: I. General approach with application to NaCl. Phys. Rev. A 140, 1226 (1965).Google Scholar
36Chiang, Y.M. and Kingery, W.D.: Grain boundary migration in nonstoichiometric solid solutions of magnesium aluminate spinel: II. Effects of grain boundary nonstoichiometry. J. Am. Ceram. Soc. 73, 1153 (1990).CrossRefGoogle Scholar
37Nuns, N., Bäclin, F., and Crampon, J.: Space charge characterisation by EDS microanalysis in spinel MgAl2O4. J. Eur. Ceram. Soc. 25, 2809 (2005).CrossRefGoogle Scholar