Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T04:20:19.377Z Has data issue: false hasContentIssue false

Post deposition excimer laser processing of MoSx thin films

Published online by Cambridge University Press:  31 January 2011

T.R. Jervis
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J-P. Hirvonen
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

We have examined the effect of excimer laser surface processing and doping with Au on the mechanical, tribological, and bonding properties of MoSx thin films. We find that the effects of processing are manifested primarily in the surface of the films, but that there is also some film-substrate interaction during high fluence processing. The changes are sufficient to dramatically alter the wear life of the films. At low loads, laser processing alone reduces the run-in period and increases wear life. At higher loads, processing reduces wear life, although the run-in period is still short. These results are understood in terms of changes in the hardness of the surface of the films. Laser processing renders deposited films insensitive to high humidity storage. After laser processing, Raman spectroscopy shows changes in bonding to that characteristic of single crystal MoS2. Laser doping with Au results in wear life comparable to or greater than that of unprocessed films even at the highest loads used. Thus, laser doped MoSx films show lower initial friction, comparable wear life, and may exhibit greater environmental stability than as-deposited films.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Spalvins, T., J. Vac. Sci. Technol. A5, 212 (1987).CrossRefGoogle Scholar
2.Dimigen, H., Hübsch, H., Willich, P., and Reichelt, K., Thin Solid Films 129, 79 (1985).CrossRefGoogle Scholar
3.Buck, V., Wear 91, 281 (1983).CrossRefGoogle Scholar
4.Bichsel, R., Buffat, P., and Levy, F., J. Phys. D 19, 1575 (1986).CrossRefGoogle Scholar
5.Lince, J. R. and Fleischauer, P. D., J. Mater. Res. 3, 1104 (1987).Google Scholar
6.Stupp, B. C., Thin Solid Films 84, 257 (1981).CrossRefGoogle Scholar
7.Kobs, K., Dimigen, H., Hübsch, H., Tolle, H. J., Leutenecker, R., and Ryssel, H., Appl. Phys. Lett. 49, 496 (1986).CrossRefGoogle Scholar
8.Spalvins, T., Thin Solid Films 118, 375 (1984).CrossRefGoogle Scholar
9.Kuwano, H. and Nagai, K., J. Vac. Sci. Technol. A4, 2993 (1986).CrossRefGoogle Scholar
10.Pope, L. E. and Panitz, J. K. G., Surf. Coat. Technol. 36, 341 (1988).CrossRefGoogle Scholar
11.Buck, V., Wear 114, 263 (1987).CrossRefGoogle Scholar
12.Fleischauer, P. D., ASLE Trans. 27, 82 (1984).CrossRefGoogle Scholar
13.Stewart, T. B. and Fleischauer, P. D., Inorg. Chem. 21, 2426 (1982).CrossRefGoogle Scholar
14.Spalvins, T., J. Vac. Sci. Technol. A5, 212 (1987).CrossRefGoogle Scholar
15.Gardos, M. N., ASLE prepr. 87-AM-7A-1 (1987).CrossRefGoogle Scholar
16.Jervis, T. R., Nastasi, M., and Hirvonen, J-P., in Laser/Optical Processing of Materials, edited by Narayan, J., Proc. SPIE 1190, 158 (1990).CrossRefGoogle Scholar
17.Jervis, T. R., Nastasi, M., Bauer, R., and Fleischauer, P. D., Thin Solid Films 181, 475 (1989).CrossRefGoogle Scholar
18.Pope, L. E., Jervis, T. R., and Nastasi, M., Surf. Coat. Technol. 42, 217 (1990).CrossRefGoogle Scholar
19.Oliver, W. C., Hutchings, R., and Pethica, J. B., ASTM Spec. Tech. Pub. 889, 90 (1986).Google Scholar
20.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
21.Bagnall, A. G., Liang, W. Y., Marsegelia, E. A., and Welber, B., Physica 99B, 343 (1980).Google Scholar
22.Montaner, A., Galtier, M., Benoit, C., and Bill, H., Phys. Status Solidi A52, 597 (1979).CrossRefGoogle Scholar
23.Wieting, T. J. and Verble, J. L., Phys. Rev. B 3, 4286 (1971).CrossRefGoogle Scholar
24.Hilton, M. R., Bauer, R., and Fleischauer, P. D., Thin Solid Films 188, 219 (1990).CrossRefGoogle Scholar
25.Bolster, R. N., Singer, I. L., Wegand, J. C., Fayeulle, S., and Gosset, C. R., Surf. Coat. Technol. (in press, 1991).Google Scholar
26.Hirvonen, J-P., personal communication.Google Scholar
27.Mikkelsen, N. J. and Sørensen, G., in New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L. E., Fehrenbacher, L. L., and Winer, W. O. (Mater. Res. Soc. Symp. Proc. 140, Pittsburgh, PA, 1989), p. 265.Google Scholar
28.Donley, M. S., Murray, P. T., Barber, S. A., and Haas, T. W., Surf. Coat. Technol. 36, 329 (1988).CrossRefGoogle Scholar
29.Singer, I. L., personal communication.Google Scholar
30.Fleischauer, P. D., Thin Solid Films 154, 309 (1987).CrossRefGoogle Scholar
31.Lince, J. R., J. Mater. Res. 5, 218 (1990).CrossRefGoogle Scholar