Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T01:18:13.240Z Has data issue: false hasContentIssue false

Processing of electroceramic-polymer composites using the electrorheological effect

Published online by Cambridge University Press:  31 January 2011

C.A. Randall
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
D.V. Miller
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
J.H. Adair
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
A.S. Bhalla
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Get access

Abstract

This paper presents a novel approach that demonstrates the usefulness of electrorheological fibril formation to form 1-3 connected ceramic-polymer composites. These fillers include ferroelectric, polar, metal, semiconductor, and superconductor crystallite powders. Patterned distributions of ceramic fillers within the polymer matrix can be induced by electric fields applied between patterned electrodes.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Newnham, R.E.Annu. Rev. Mater. Sci. 16, 4768 (1986).CrossRefGoogle Scholar
2Newnham, R.E., Rep. Prog. Phys. 52, 123156 (1989).CrossRefGoogle Scholar
3Newnham, R.E., Ferroelec. 68, 132 (1986).CrossRefGoogle Scholar
4Carpay, F.M.A. and Cense, W.A., J. Cryst. Growth 24, 551554 (1974).CrossRefGoogle Scholar
5Halliyal, A., Ph.D. Thesis, Penn State University, University Park, PA 16802.Google Scholar
6Stubican, V. S. and Bradt, R.C., Annu. Rev. Mater. Sci. 11, 267297 (1981).CrossRefGoogle Scholar
7Corcoran, E., Sci. Am. 263, 122131 (1990).CrossRefGoogle Scholar
8Calvert, P. and Mann, S., J. Mater. Sci. 23, 38013815 (1988).CrossRefGoogle Scholar
9Rosenblatt, C., Yager, P., and Schoen, P. E., J. Bio. Phys. 52, 295 (1987).Google Scholar
10Behvoozi, F., Orman, M., Reese, R., Stockton, W., Calvert, J., Rochford, F., and Schoen, P., Sub. J. Appl. Phys. (1990).Google Scholar
11Winslow, W.M., J. Appl. Phys. 20, 1137 (1949).CrossRefGoogle Scholar
12Brien, R.W., Adv. Colloid Interface Sci. 16, 281320 (1982).CrossRefGoogle Scholar
13Hurd, A. J., Graden, S., and Meyer, R.B., Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, New York, Chichester, Brisbane, Toronto, and Singapore, 1986), Chap. 58, pp. 555560.Google Scholar
14Miller, D.V., Randall, C.A., Adair, J.H., and Bhalla, A.S. (unpublished research).Google Scholar
15Jones, T.B., Proc. 2nd Int. Conf. ER Fluids, edited by Carlson, ID., Sprecher, A. F., and Conrad, H. (Technomic Publishing Company, 1989), pp. 1426.Google Scholar
16Webb, N., Chemistry in Britain 4, 338340 (1990).Google Scholar
17Deinaga, Y. F. and Vinogradov, G.V., Rheologica Acta 23, 636651 (1984).CrossRefGoogle Scholar
18Adriani, P.M. and Gast, A.P., Phys. Fluids 31 (10), 27572768 (1988).CrossRefGoogle Scholar
19Bonnecaze, R.T. and Brady, J.F., Proc. 2nd Int. Conf. ER Fluids, edited by Carlson, J. D., Sprecher, A. F., and Conrad, M. (Tech-nomic Publishing Company, 1989), pp. 2740.Google Scholar
20Pohl, H.A., J. Appl. Phys. 29, 11821189 (1958).CrossRefGoogle Scholar
21Pohl, H.A. and Schwar, J.P., J. Appl. Phys. 30, 6973 (1959).CrossRefGoogle Scholar