Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T20:06:34.873Z Has data issue: false hasContentIssue false

Properties and behavior of the platinum group metals in the glass resulting from the vitrification of simulated nuclear fuel reprocessing waste

Published online by Cambridge University Press:  31 January 2011

Ch. Krause
Affiliation:
Bundesamt für Strahlenschutz, Albert-Schweitzer-Str. 18, 3320 Salzgitter 1, Germany
B. Luckscheiter
Affiliation:
Institut für Nukleare Entsorgungstechnik, Kernforschungszentrum Karlsruhe GmbH, Postfach 3640, W-7500 Karlsruhe, Germany
Get access

Abstract

Two types of platinum group metal particles were found in borosilicate nuclear waste glasses: needle-shaped RuO2 particles and spherical PdRhxTey alloys. They form a dense sediment of high electrical conductivity and relatively high viscosity at the bottom of the ceramic melting furnace. The sludge shows a non-Newtonian flow behavior. The viscosity and conductivity of the sludge depend not only on the platinum group metal content but also on the texture and morphology of the RuO2 particles. RuO2 forms long, needle-shaped crystals which are caused by alkalimolybdate salt melts that formed in the calcine layer. The salt melts oxidize the Ru present as small RuO2 particles after calcination to higher oxidation states. Ruthenium (VI) compounds are formed, presumably, which are not stable with respect to RuO2 under the melting conditions. RuO2 precipitates and crystallizes into long, needle-like particles.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kleykamp, H., Nucl. Technol. 80, 412422 (1988).Google Scholar
2.Butler, S. R. and Gillson, J. L., Mater. Res. Bull. VI, 8190 (1971).CrossRefGoogle Scholar
3.Winter, E. R.S., J. Chem. Soc. A7, 28892902 (1968).CrossRefGoogle Scholar
4.Boman, C-E., Acta Chim. Scand. 24, 116122 (1970).CrossRefGoogle Scholar
5.Rogers, D. B., Shannon, R. D., Sleight, A. W., and Gillson, J. L., Inorg. Chem. 8, 841869 (1969).Google Scholar
6.Schreiber, H. D., Settle, F. A., Jamison, P. H., Eckenrode, J. P., and Headley, G. W., J. Less-Common Metals 115, 145154 (1986).CrossRefGoogle Scholar
7.Bayer, G. and Wiedemann, H. G., Archiwum Hutnica XXII,1, 313 (1977).Google Scholar
8.Rao, K. V. Krishna, Thermal Expansion-1973 AIP Conference Proceedings No. 17, 291–230 (1974).Google Scholar
9.Rao, K. V. Krishna and Iyengar, L., Acta Cryst. A 25, 302303 (1969).CrossRefGoogle Scholar
10.Pizzini, S. and Bianchi, G., The Science of Materials Used in Advanced Technology, edited by Parker, E. R. and Colombo, U. (John Wiley and Sons, New York, London, Sidney, Toronto, 1973).Google Scholar
11.Plodinec, M-J., Rheology of Glasses Containing Crystalline Materials, Adv. Ceram. 20 (1986).Google Scholar
12.Schramm, G., Einfiihrung in die praktische Viskosimetrie (Gebr. Haake GmbH, Karlsruhe, 1981).Google Scholar
13.Gonzalez-Calbet, J. M., Herrero, M. P., Alario-Franco, M. A., and Pernet, M., J. Less-Common Metals 80, 105111 (1987).Google Scholar
14.Capobianco, J. C. and Drake, M. J., Geochim. Cosmochim. Acta 54, 869874 (1990).CrossRefGoogle Scholar
15.Sacchi, M., Antonini, M., and Prudenzati, M., Phys. Status Solidi (a) 109, K23 (1988).Google Scholar
16.Odoj, R., Merz, E., and Wolters, R., Scientific Basis for Nuclear Waste Management 2, 911917 (1980).CrossRefGoogle Scholar