Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T19:43:52.159Z Has data issue: false hasContentIssue false

Properties of furnace-annealed, high-resistivity, arsenic-implanted polycrystalline silicon films

Published online by Cambridge University Press:  31 January 2011

W.K. Schubert
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

The approach to equilibrium of the grain structure and electrical properties has been studied in high-resistivity, As-implanted polycrystalline silicon films on thermally oxidized silicon wafers. Thermal annealing parameters are found to be critical in determining the film sheet resistance. Results from spreading resistance analysis, secondary ion mass spectroscopy, and transmission electron microscopy indicate that As diffusion down the grain boundaries into the film leads to a large fraction of the As being left in inactive grain boundary sites. Reactivation of the As is negligible when processing temperatures are 900 °C or lower. A relatively simple diffusion model has been developed that can fit the As concentration profile over the entire film thickness. This makes the model applicable to normal integrated circuit processing conditions where film thickness effects and nonequilibrium dopant distributions are important.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Seto, J. Y. W., J. Appl. Phys. 46, 5247 (1975).CrossRefGoogle Scholar
2Seager, C. H., Ann. Rev. Mater. Sci. 15, 271 (1985) and references therein.CrossRefGoogle Scholar
3Seager, C. H. and Castner, T. G., J. Appl. Phys. 49, 3879 (1978).CrossRefGoogle Scholar
4Baccarini, G., Ricco, B., and Spadini, G., J. Appl. Phys. 49, 5565 (1978).Google Scholar
5Pike, G. E. and Seager, C. H., Adv. Ceram. 1, 53 (1981).Google Scholar
6Smits, F. M., Bell Syst. Tech. J. 37, 711 (1958).CrossRefGoogle Scholar
7Spreading resistance measurements were done by Solecon Laboratories of Sunnyvale, CA.Google Scholar
8Secondary ion mass spectroscopy measurements were done by Charles Evans and Associates of San Mateo, CA.Google Scholar
9Mandurah, M. M., Saraswat, K. C., Helms, C. R., and Kamins, T. I., J. Appl. Phys. 51, 5755 (1980).CrossRefGoogle Scholar
10Swaminathan, B., Saraswat, K. C., Dutton, R. W., and Kamins, T. I., Appl. Phys. Lett. 40, 795 (1982).CrossRefGoogle Scholar
11Mandurah, M. M., Saraswat, K. C., and Kamins, T. I., Appl. Phys. Lett. 36, 683 (1980).CrossRefGoogle Scholar
12Arienzo, M., Komem, Y., and Michel, A. E., J. Appl. Phys. 55, 365 (1984).CrossRefGoogle Scholar
13Swaminathan, B., Demoulin, E., TSigmon, . W., Dutton, R. W., and Reif, R., J. Electrochem. Soc.: Solid-State Sci. Technol. 127, 2227 (1980).CrossRefGoogle Scholar
14Wilson, S. R., Gregory, R. B., Paulson, W. M., Krause, S. J., Gres-sett, J., Hamdi, A. H., McDaniel, F. D., and Downing, R. G., J. Electro-chem. Soc: Solid-State Sci. Technol. 132, 922 (1985).Google Scholar
15Holloway, P. H., J. Vac. Sci. Technol. 21, 19 (1982).CrossRefGoogle Scholar
16Rose, J. H. and Gronsky, R., Appl. Phys. Lett. 41, 993 (1982).CrossRefGoogle Scholar
17Tsukamoto, K., Akasaka, Y., and Horie, K., J. Appl. Phys. 48, 1815 (1977).CrossRefGoogle Scholar
18Chin, T. C. and Gosh, H. N., IBM J. Res. Dev. 15, 472 (1971).Google Scholar
19Crank, J., The Mathematics of Diffusion (Oxford U.P., Oxford, 1975), 2nd ed., p. 144.Google Scholar
20Grovenor, C. R. M., Batson, P. E., Smith, D. A., and Wong, C., Philos. Mag. A 50, 409 (1984).Google Scholar
21Oppolzer, H., Eckers, W., and Schaber, H., The Electrochemical Society, Extended Abstracts 85-1, 379 (1985).Google Scholar
22Harrison, L. G., Trans. Faraday Soc. 57, 1191 (1961).CrossRefGoogle Scholar
Semiconductor Technology Handbook, edited by Trapp, O. D., Blanchard, R. A., and Kamins, T. I. (Technology Associates, San Mateo, CA, 1978), p. 6–2.Google Scholar
24Pennycock, S. J., Narayan, J., and Holland, O. W., J. Electrochem. Soc: Solid-State Sci. Technol. 132, 1962 (1985).Google Scholar