Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T04:27:12.703Z Has data issue: false hasContentIssue false

Pulsed laser deposition of carbon nitride thin films in nitrogen gas ambient

Published online by Cambridge University Press:  31 January 2011

Masayuki Okoshi
Affiliation:
Laser Science Research Group, The Institute of Physical and Chemical Research, (Riken), 2–1 Hirosawa, Wako, Saitama 351–01, Japan
Hiroshi Kumagai
Affiliation:
Laser Science Research Group, The Institute of Physical and Chemical Research, (Riken), 2–1 Hirosawa, Wako, Saitama 351–01, Japan
Koichi Toyoda
Affiliation:
Laser Science Research Group, The Institute of Physical and Chemical Research, (Riken), 2–1 Hirosawa, Wako, Saitama 351–01, Japan
Get access

Abstract

Carbon nitride thin films have been successfully deposited by ablating a graphite target (99.999%) in nitrogen gas ambient using the second (532 nm) or third (355 nm) harmonic of a Q-switched Nd : YAG laser. Carbon nitride films consisting of approximately 40% nitrogen were obtained at 7.5 × 10−3 Pa of nitrogen gas pressure using the third harmonic laser. The C–N chemical bond in the films was observed by x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Ellipsometric studies revealed that the refractive index of the fabricated films decreased with increasing nitrogen concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).CrossRefGoogle Scholar
2.Ham, H. X. and Feldman, B. J., Solid State Commun. 65, 921 (1988).Google Scholar
3.Kaufman, J. H., Metin, S., and Saperstein, D. D., Phys. Rev. B 39, 13053 (1989).CrossRefGoogle Scholar
4.Maya, L., Cole, D. R., and Hagaman, E. W., J. Am. Ceram. Soc. 74, 1686 (1991).Google Scholar
5.Toring, C. J., Sivertsen, J. M., Judy, J. H., and Chang, C., J. Mater. Res. 5, 2490 (1990).CrossRefGoogle Scholar
6.Li, D., Cung, Y. W., Mong, M. S., and Sproul, W. D., J. Appl. Phys. 74, 219 (1993).CrossRefGoogle Scholar
7.Fujimoto, F. and Ogata, K., Jpn. J. Appl. Phys. 32, 420 (1993).Google Scholar
8.Niu, C., Lu, Y. Z., and Lieber, C. M., Science 261, 334 (1993).CrossRefGoogle Scholar
9.Ren, Z-M., Du, Y-C., Ying, Z-F., Qiu, Y-X., Xiong, X-X., Wu, J-D., and Li, F-M., Appl. Phys. Lett. 65, 1361 (1994).Google Scholar
10.Thomann, A. L., Harmann, J., and Boulmer-Leborgne, C., Thin Solid Films 241, 39 (1994).Google Scholar
11.Tsai, H. and Body, D. B., J. Vac. Sci. Technol. A5, 3287 (1987).CrossRefGoogle Scholar
12.Nakayama, N., Tsuchiya, Y., Tamada, S., Kosuge, K., Nagata, S., Tashiro, K., and Yamaguchi, S., Jpn. J. Appl. Phys. 32, 1465 (1993).Google Scholar
13.Edwards, D. F. and Philipp, H. R., Handbook of Optical Constants of Solids (Academic Press, San Diego, CA, 1985), p. 665.Google Scholar
14.Born, M. and Wolf, E., Principles of Optics (Pergamon Press, Oxford, 1975).Google Scholar