Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T21:04:25.540Z Has data issue: false hasContentIssue false

Reactions at the interface between multi-component glasses and metallic lithium films

Published online by Cambridge University Press:  31 January 2011

K. R. Zavadil
Affiliation:
Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
N. R. Armstrong
Affiliation:
Department of Chemistry, The University of Arizona, Tucson, Arizona 85721
C. H. F. Peden
Affiliation:
Inorganic Materials Chemistry Division, Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
Get access

Abstract

The reactions of vacuum deposited thin films of lithium with various complex glasses have been explored using x-ray photoelectron spectroscopy (XPS). In contrast to lithium reactions with simple glasses such as silica or boron oxides, the reactions are predominantly those of the network modifiers such as sodium, potassium, and magnesium. XPS and x-ray induced Auger lineshapes indicate the migration of the network modifier to the near surface region followed by its reduction. In the case of magnesium, there is evidence for stable alloy formation with unreacted lithium following these migration and reduction steps.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Levy, S. C., in Proc. of the Symp. on Corrosion in Batteries, Fuel Cells and Corrosion in Solar Energy Systems, edited by Johnson, C. J. and Pohlman, S.R. (The Electrochemical Society, Pennington, NJ, 1983), p. 9.Google Scholar
2Gangadharan, R., Namboodiri, P. N., Prasao, K. V., and Vijuranathan, K., J. Power Sources 4, 1 (1979).Google Scholar
3Bunker, B.L., Douglas, S.C., and Quinn, R. K., J. Mater. Res. 2, 182 (1987).CrossRefGoogle Scholar
4Skarstao, P.M., Merritt, P.R., Istephanous, N. S., and Untereker, P.F., in Power Sources 11, edited by Pearce, L. J., International Power Sources Symposium Committee, 1986, p. 463.Google Scholar
5Bunker, B.C., Leedecke, C.J., Levy, S.C., and Crafts, C. C., in Power Sources 8, edited by Thompson, J. (Academic Press, New York, 1981), p. 53.Google Scholar
6Nelson, C. and Bunker, B. C., Abstracts 29 and 30, Extended Abstracts, The Electrochemical Society, San Francisco, CA, May 1983.Google Scholar
7Maschhoff, B.L., Zavadil, K.R., and Armstrong, N.R., Appl. Surf. Sci., 27, 285 (1986).CrossRefGoogle Scholar
8Maschoff, B.L., Zavadil, K.R., and Armstrong, N.R., in Proc. of the Symp. on Lithium Batteries, edited by Dey, A. N. (The Electrochemical Society, Pennington, NJ), Vol. 87-1, p. 212.Google Scholar
9Penn, D.R., J. Electron Spectrosc. Relat. Phenom. 9, 29 (1976).CrossRefGoogle Scholar
10Watkins, R. D., Bunker, B.C., Douglas, S.C., Bron, R.K., and Hellstrom, E. E., #879398, 22nd Intersociety Energy Conversion Engineering Conference, Philadelphia, PA, 1987.Google Scholar
11Zavadil, K. R., Ph.D. Dissertation, University of Arizona, 1988.Google Scholar
12Briggs, D. and Riviere, J. C., in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M. P. (John Wiley and Sons, 1983), p. 133.Google Scholar
13Ley, L., McFeely, F. R., Kowalczyk, S.P., Jenkins, J.G., and Shirley, D.A., Phys. Rev. B 11, 600 (1975).Google Scholar
14Wagner, C.D., J. Chem. Soc. Far. Disc. 60, 306 (1975).Google Scholar
15Wagner, C.D., Gale, L. H., and Raymond, R. H., Anal. Chem. 51, 466 (1979).Google Scholar
16Hodgewijs, R., Fiermans, L., and Vennik, J., J. Electron Spectrosc. Relat. Phenom. 11, 171 (1977).CrossRefGoogle Scholar
17Malinin, V. R. and Eustrop'ev, K. K., Radiokhimiya 14, 160 (1972).Google Scholar
18Kreidl, N. J., in Glass: Science and Technology, edited by Uhlman, D. R. and Kreidl, N. J. (Academic Press, New York, 1983), Vol. 1, p. 105.Google Scholar
19Frischat, G. H., Ionic Diffusion in Oxide Glasses (Trans. Tech. Publications, Bay Village, OH, 1975).Google Scholar
20Dorenus, R. H., Glass Science (John Wiley and Sons, New York, 1973).Google Scholar
21Moiseev, V.V. and Zhabrev, V. A., Silicates Ind. 30, 495 (1965).Google Scholar
22Levi, H. W., Lutze, W., Malow, G., and Sedighi, N., Phys. Stat. Soc. 5a, 617 (1971).Google Scholar
23Ingram, M.D., Phys. Chem. Glass 28, 215 (1987).Google Scholar
24(a) Maschhoff, B. L., Zavadil, K. R., Nebesny, K. W., Fordemwalt, J. W., and Armstrong, N. R., in X-Rays in Materials Analysis, Novel Applications and Recent Developments, edited by Rusch, T. W. and Sherwood, P.M.A. (SPIE, Bellingham, WA, 1986).Google Scholar
(b) Maschhoff, B.L., Ph.D. Dissertation, University of Arizona, 1988.Google Scholar
25Barrie, A. and Street, F. J., J. Electron Spectrosc. Relat. Phenom. 7, 1 (1975).Google Scholar
26Klem, W. and Kunze, D., Proc. of the Symp. on the Alkali Metals (The Chemical Society, Nottingham, England, July 1966), p. 15.Google Scholar
27Gardon, R., J. Non-Cryst. Solids 73, 233 (1985).Google Scholar
28Terai, R. and Kitaoka, T., J. Ceram. Assoc. Japan 76, 393 (1968).CrossRefGoogle Scholar