Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T03:36:47.688Z Has data issue: false hasContentIssue false

Refractory semiconductor of boron phosphide

Published online by Cambridge University Press:  31 January 2011

Y. Kumashiro
Affiliation:
Department of Materials Science and Chemical Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240, Japan
Get access

Abstract

The single crystal growth of boron phosphide (BP) by employing the high pressure flux method and chemical vapor deposition (CVD) process is described together with characterization of the prepared BP and its electrical, thermal, semiconducting, and electrochemical properties. BP single crystals prepared by the high pressure flux method contain copper used as the flux, but they are promising for photocathode materials. BP single crystalline wafers prepared by the CVD process using Si wafer substrate contained autodoped silicon with the concentration of 1018−1020 atoms·cm−3, depending on the growth temperature and the substrate plane. The Si atoms which act as acceptors are incorporated at phosphorus sites in BP. The lattice constants determined by the Bond method explain the conduction type of BP. Some electronic transport properties such as donor and acceptor levels and lattice scattering process before and after thermal neutron experiments are clarified. The thermal conduction is limited by three-phonon processes. The formation of defects by thermal neutron irradiation and that of structural disorder by ion-irradiation are mentioned. Schottky diodes consisting of n–BP and Sb or n–BP and Au, which are denoted as n–BP–Sb and –Au, respectively, show excellent characteristics, and their barrier heights are independent of metals and two-thirds of energy bandgap, expected from the surface-state model. Finally, recent results on thermoelectric properties of sintered specimens are mentioned.

Type
Commentaries and Reviews
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Peret, J. L., J. Am. Ceram. Soc. 47, 44 (1964).CrossRefGoogle Scholar
2Takigawa, M., Hirayama, M., and Shohno, K., Jpn. J. Appl. Phys. 13, 411 (1974).CrossRefGoogle Scholar
3Takenaka, T., Takigawa, M., and Shohno, K., J. Electrochem. Soc. 125, 634 (1978).CrossRefGoogle Scholar
4Sugiura, S., Yoshida, T., Shohno, K., and Dumin, D. J., Appl. Phys. Lett. 44, 1069 (1984).CrossRefGoogle Scholar
5Yoshida, T., Shono, K., and Lee, J. D., Jpn. J. Appl. Phys. 24, L275 (1985).CrossRefGoogle Scholar
6Golikova, O. A., Phys. Status Solidi (a) 51, 11 (1979).CrossRefGoogle Scholar
7Chu, T. L., Jackson, J. M., Hyslop, A. E., and Chu, S. C., J. Appl. Phys. 42, 420 (1971).Google Scholar
8Nishinaga, T., Ogawa, H., Watanabe, H., and Arizumi, T., J. Cryst. Growth 13/14, 346 (1972).CrossRefGoogle Scholar
9Chu, T. L., Jackson, J. M., and Smeltzer, R. K., J. Cryst. Growth 15, 254 (1972).CrossRefGoogle Scholar
10Chu, T. L., Jackson, J. M., and Smeltzer, R. K., J. Electrochem. Soc. 120, 802 (1973).CrossRefGoogle Scholar
11Kato, N., Kammura, W., Iwami, M., and Kawabe, K., Jpn. J. Appl. Phys. 16, 1623 (1977).CrossRefGoogle Scholar
12Baranov, B. V., Proclukhan, V. D., and Goryunova, N. A., Neorg. Mater. 3, 1691 (1967).Google Scholar
13Ananthanarayanan, K. P., Mohanty, C., and Gielisse, P. J., J. Cryst. Growth 20, 63 (1973).CrossRefGoogle Scholar
14Kobayashi, T., Susa, K., and Taniguchi, S., Mater. Res. Bull. IX, 625 (1974).CrossRefGoogle Scholar
15Niemyski, T., Mierzefewska-Appenheimer, S., and Mafewski, J., in Crystal Growth, edited by Peiser, H. S. (Pergamon, Oxford, 1967), p. 585.Google Scholar
16Kumashiro, Y., Okada, Y., and Gonda, S., J. Cryst. Growth 70, 507 (1985).CrossRefGoogle Scholar
17Suzuki, A., Takigawa, M., and Shono, K., Jpn. J. Appl. Phys. 16, 1053 (1977).CrossRefGoogle Scholar
18Kumashiro, Y., Yao, T., and Gonda, S., J. Cryst. Growth 70, 515 (1985).CrossRefGoogle Scholar
19Nishinaga, T., Oyo Butsuri 55, 1069 (1986).Google Scholar
20Kumashiro, Y., Hirabayashi, M., and Koshiro, T., J. Less-Common Metals 143, 159 (1988).CrossRefGoogle Scholar
21Yugo, S., Sato, T., and Kimura, T., Appl. Phys. Lett. 46, 842 (1985).CrossRefGoogle Scholar
22Kim, C. J. and Shono, K., J. Electrochem. Soc. 131, 120 (1984).CrossRefGoogle Scholar
23Mizutani, T., Ogawa, J., Nishinaga, T., and Uchiyama, S., Jpn. J. Appl. Phys. 15, 1305 (1976).CrossRefGoogle Scholar
24Shohno, K., Takigawa, M., and Nakada, T., J. Cryst. Growth 24/25, 193 (1974).CrossRefGoogle Scholar
25Slack, G. A., J. Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
26Kumashiro, Y., Mitsuhashi, T., Okaya, S., Muta, F., Koshiro, T., Takahashi, Y., and Hirabayashi, M., J. Appl. Phys. 65, 2147 (1989).CrossRefGoogle Scholar
27Kumashiro, Y., Mitsuhashi, T., Okaya, S., Muta, F., Koshiro, T., Takahashi, Y., Hirabayashi, M., and Okada, Y., High Temp.-High Press. 21, 105 (1989).Google Scholar
28Ohsawa, J., Nishinaga, T., and Uchiyama, S., Jpn. J. Appl. Phys. 17, 1059 (1978).CrossRefGoogle Scholar
29Mitsuhashi, T., Muta, F., Chiba, T., and Fujiki, Y., RIGAKU J. 19 (2), 16 (1988).Google Scholar
30Steigmeier, E. F. and Kudman, I., Phys. Rev. 132, 508 (1963).CrossRefGoogle Scholar
31Kumashiro, Y., Kudo, K., Matsumoto, K., Okada, Y., and Koshiro, T., J. Less-Common Metals 143, 71 (1988).CrossRefGoogle Scholar
32Gamo, K., Yagita, H., Takai, M., Namba, S., and Takigawa, M., Radiat. Eff. 47, 64 (1985).Google Scholar
33Kobayashi, N., Kumashiro, Y., Nashiyama, I., and Nishijima, T., in Application of Ion Beams in Materials Science (Hossei Univ. Press, Tokyo, 1988), p. 481.Google Scholar
34Merkle, K. L., Pronko, P. P., Gemmel, D. S., Mikkelson, C. R., and Wrobel, J. R., Phys. Rev. B 8, 1002 (1973).CrossRefGoogle Scholar
35Quere, Y., Radiat. Eff. 28, 353 (1976).Google Scholar
36Kaufmann, R. and Meyer, O., Radiat. Eff. 52, 53 (1979).CrossRefGoogle Scholar
37Elliman, R. G., Williams, J. S., Brown, W. L., Leiberich, A., Maher, D. M., and Knoell, R. V., Nucl. Instrum. Methods B19, 435 (1987).CrossRefGoogle Scholar
38Kobayashi, N., Kobayashi, H., and Kumashiro, Y., Nucl. Instrum. Methods B40/41, 550 (1989).CrossRefGoogle Scholar
39Fujishima, A. and Honda, K., Nature 238, 37 (1972).CrossRefGoogle Scholar
40Ginley, D. S., Baughman, R. J., and Butler, M. A., J. Electrochem. Soc. 130, 1999 (1983).CrossRefGoogle Scholar
41Lee, J-S., Fujishima, A., Honda, K., and Kumashiro, Y., Bull. Chem. Soc. Jpn. 58, 2634 (1985).CrossRefGoogle Scholar
42Takenaka, T., Takigawa, M., and Shohno, K., Jpn. J. Appl. Phys. 15, 2021 (1976).CrossRefGoogle Scholar
43Mead, C. A., Solid-State Electron. 9, 1023 (1966).CrossRefGoogle Scholar
44Sge, S. M., in Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).Google Scholar
45Kumashiro, Y. and Okada, Y., Appl. Phys. Lett. 47, 64 (1985).CrossRefGoogle Scholar
46Kumashiro, Y., Koshiro, T., and Okada, Y., J. Electrochem. Soc. 136, 1830 (1989).CrossRefGoogle Scholar
47Spicer, W. E., Lindau, I., Skeath, P., Su, C. Y., and Chye, P., Phys. Rev. Lett. 44, 420 (1980).CrossRefGoogle Scholar
48Ashok, S., Lester, A., and Fonash, S. J., IEEE Electron Device Lett. EDL-1, 200 (1980).CrossRefGoogle Scholar
49Kumashiro, Y., Hirabayashi, M., Koshiro, T., and Takahashi, Y., in Sintering '87, edited by Somiya, S., Shimada, M., Yoshimura, M., and Watanabe, R. (Elsevier Appl. Sci., 1987), p. 43.Google Scholar
50Kumashiro, Y., Hirabayashi, M., and Takagi, S., in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R. F., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990).Google Scholar