Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T01:11:21.685Z Has data issue: false hasContentIssue false

Shear-modulus change below Tc in YBa2Cu3O7−x

Published online by Cambridge University Press:  31 January 2011

H. M. Ledbetter
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Boulder, Colorado 80303
M. W. Austin
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Boulder, Colorado 80303
S. A. Kim
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards, Boulder, Colorado 80303
T. Datta
Affiliation:
Department of Physics, University of South Carolina, Columbia, South Carolina 29208
C. E. Violet
Affiliation:
Lawrence Livermore National Laboratory, Liuermore, California 94550
Get access

Abstract

The ultrasonic transverse-wave velocity in the high-Tc metal-oxide superconductor YBa2Cu3O7−x between 275 and 4 K was measured. Above Tc the velocity shows normal behavior: during cooling, it displays a monotonic increase with decreasing slope. During cooling below Tc the shear modulus departs from normal behavior, increasing as ΔG /G = b [1 − (T/Tc)n, where n = 3. These results depart dramatically from those expected for a simple second-order normal-superconducting phase transition.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pauli, W. reported in Olsen, J. L. and Rohrer, H.Helv. Phys. Acta 33, 872 (1960).Google Scholar
2Frohlich, H.Phys. Rev. 79, 845 (1950).CrossRefGoogle Scholar
3Shoenberg, D.Superconductivity (Cambridge U.P., Cambridge, 1952), p. 75.Google Scholar
4Grassmann, P. and Olsen, J. L.Helv. Phys. Acta 28, 24 (1955).Google Scholar
5Pippard, A. B.Philos. Mag. 46, 1115 (1955).CrossRefGoogle Scholar
6Landau, L. D. and Lifshitz, E. M.Statistical Physics (Pergamon, London, 1959), p. 438.Google Scholar
7Bishop, B. J.Ramirez, A. P.Gammel, P. L.Batlogg, B.Riet-man, E. A., Cava, R. J. and Millis, A. J.Phys. Rev. B 36, 2408 (1987).CrossRefGoogle Scholar
8Migliori, A.Chen, T.Alavi, B. and Griiner, G.Solid State Commun. 63, 827 (1987).CrossRefGoogle Scholar
9Ledbetter, H. M.J. Appl. Phys. 44, 1451 (1973).CrossRefGoogle Scholar
10McMillan, W. L.Phys. Rev. 167, 331 (1968).CrossRefGoogle Scholar
11Koster, W. and Franz, H.Metall. Rev. 6, 1 (1961):CrossRefGoogle Scholar
12Liithi, B. and Rehwald, W. in Structural Phase Transitions! (Springer, Berlin, 1981), pp. 131184.CrossRefGoogle Scholar
13Ledbetter, H. M.Kim, S. A.Austin, M. W.Datta, T.Estrada, J. and Violet, C. E. Phys. Rev. B (to be published).Google Scholar
14Ledbetter, H. M.Frederick, N. V. and Austin, M. W.J. Appl. Phys. 51, 305 (1980).CrossRefGoogle Scholar
15Olsen, J. L.Nature 175, 37 (1955).CrossRefGoogle Scholar
16Garberand, J. A.Granato, A. V.Phys. Rev. B. 11, 3990 (1975).CrossRefGoogle Scholar
17Varshni, Y. P.Phys. Rev. B 2, 3952 (1970).CrossRefGoogle Scholar
18Girifalco, L. A.Statistical Physics of Materials (Wiley, New York, 1973), p. 76.Google Scholar
19Berlincourt, D. and Jaffe, H.Phys. Rev. 1ll, 143 (1958).CrossRefGoogle Scholar
20Block, S.Piermarini, G. J.Munro, R.G., and Wong-Ng, W., Adv. Ceram. Mater. 2, 601 (1987).CrossRefGoogle Scholar
21Beno, M. A.Soderholm, L, Capone, D. W.Hinks, D. G.Jorgensen, J. D.Schuller, I. K.Segre, C. U.Zhang, K. and Grace, J. D.Appl. Phys. Lett. 51, 57 (1987).CrossRefGoogle Scholar
22Strobel, P.Capponi, J. J.Chaillout, C.Marezio, M. and Tho-lence, J. L., Nature 327, 306 (1987).CrossRefGoogle Scholar
23Pippard, A. B.Classical Thermodynamics (Cambridge U.P., Cambridge, 1961), p. 135.Google Scholar