Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T00:10:36.287Z Has data issue: false hasContentIssue false

Sol-gel control of the micro/nanostructure of functional ceramic-ceramic and metal-ceramic composites

Published online by Cambridge University Press:  31 January 2011

Philippe Colomban
Affiliation:
LASIR, CNRS, 2 rue Henri Dunant, 94320, Thiais and Materials Department, ONERA, BP 72, 92322 Châtillon, France
Get access

Abstract

The problems encountered to tailor simultaneously various specific chemical or physical properties are discussed. Selected polymeric precursors used in association with fine powders allow the control of the nano/microstructure of composites and hence the preparation of functional (FGM) and hierarchical reinforced (HRC) composites, making it possible to combine several kinds of fibers, interphases, and matrices in the same composite (hot microwave absorbent), to control the fiber/matrix interface (long life times composites), to achieve net-shape sintering of 3D composite matrices, and to prepare thick films of metal-ceramic composites with tailored microwave absorption (radar stealthiness).

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kerans, R. J., Hay, R. S., Pagano, N. J., and Parthasarathy, T. A., Ceram. Bull. 68 (2), 429 (1989).Google Scholar
2.Vinoy, K. J. and Jha, R. M., Radar Absorbing Materials (Kluwer Academic Publ., Norwell, USA, 1996).Google Scholar
3.Harteman, P. and Labeyrie, M., Revue Technique Thomson-CSF, 19 (3–4), 413 (1987).Google Scholar
4.Amada, S., Munekata, T., Nagase, Y., and Shimuzu, N., Proc. FGM'94, Oct. 10–12, 1994, Lausanne, edited by Ilschner, B. and Cherradi, N. (1995), pp. 689694.Google Scholar
5.Mazdiyasni, K. S., Ceram. Int. 8, 42 (1982).CrossRefGoogle Scholar
6.Klein, L. C., Sol-Gel Technology (Noyes Publications, Park Ridge, NJ, 1988).Google Scholar
7.Colomban, Ph., Ceram. Int. 15, 23 (1989) and References therein.Google Scholar
8.Birot, M., Pillot, J. P., and Dunoguès, J., Chem. Rev. 95, 1443 (1995).Google Scholar
9.Allcock, H. R., Adv. Mater. 6 (2), 106 (1994).CrossRefGoogle Scholar
10.Vendange, V. and Colomban, Ph., J. Porous Mater. 3, 193 (1996).CrossRefGoogle Scholar
11.Yoldas, B. E., J. Mater. Sci. 14, 1483 (1979).Google Scholar
12.Vendange, V. and Colomban, Ph., J. Mater. Res. 11, 518 (1996).Google Scholar
13.Murakata, T., Sato, S., Ohgawara, T., Watanabe, T., and Suzuki, T., J. Mater Sci. 25, 1567 (1992).Google Scholar
14.Hench, L. L., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R., (Wiley, New York, 1986), p. 52.Google Scholar
15.Brinker, C. J., Scherrer, G. W., and Roth, E. P. II, J. Non-Cryst. Solids 72, 345 (1985).Google Scholar
16.Bruneton, E., Bigarré, J., Michel, D., and Colomban, Ph., J. Mater. Sci. 32, 3541 (1997).Google Scholar
17.Perthuis, H., Velasco, G., and Colomban, Ph., Jpn. J. Appl. Phys. 23 (5), 534 (1984).CrossRefGoogle Scholar
18.Colomban, Ph. and Mazerolles, L., J. Mater. Sci. Lett. 2, 1077 (1990).CrossRefGoogle Scholar
19.Colomban, Ph. and Mazerolles, L., J. Mater. Sci. 26, 3503 (1991).CrossRefGoogle Scholar
20.Colomban, Ph., in Proc. 3rd Int. Conf. on Intelligent Materials; 3rd Eur. Conf. on Smart Structures and Materials, ICIM/ECSSM'96, Lyon, June 3–5, 1996, edited by Gobin, P. F. and Tatibouët, J., SPIE 2779, 813 (1996).Google Scholar
21.Colomban, Ph. and Vendange, V., in Nanophase and Nanocomposites Materials II, edited by Komarneni, S., Parker, J. C., and Wollenberger, H. J. (Mater. Res. Soc. Symp. Proc. 457, Pittsburgh, PA, 1997), p. 451.Google Scholar
22.Vendange, V., Colomban, Ph., and Larché, F., Microporous Mater. 5, 389 (1996).CrossRefGoogle Scholar
23.Colomban, Ph., Ritti, M. H., and Parlier, M., unpublished results.Google Scholar
24.Colomban, Ph., Menet, M., Mouchon, E., Courtemanche, C., and Parlier, M., French Patent No. FR2672283 (7 Apr. 1992), European Patent No. EP92400235-5 (18 Dec. 1996), U.S. Patent No. 7930804.Google Scholar
25.Colomban, Ph., Bruneton, E., Lagrange, J. L., and Mouchon, E., J. Eur. Ceram. Soc. 16, 301 (1996).Google Scholar
26.Karlin, S. and Colomban, Ph., J. Raman Spectrosc. 28, 219 (1997).3.0.CO;2-F>CrossRefGoogle Scholar
27.Mouchon, E. and Colomban, Ph., Composites 26, 175 (1995).CrossRefGoogle Scholar
28.Jamet, J., Demange, D., and Loubeau, J., French Patent No. FR25-26785 (18 Nov. 1983).Google Scholar
29.Colomban, Ph. and Wey, M., J. Eur. Ceram. Soc. 17, 1475 (1997).Google Scholar
30.Mouchon, E. and Colomban, Ph., J. Mater. Sci. 31, 323 (1996).Google Scholar
31.Lagrange, J. L. and Colomban, Ph., Composites Sci. Technol. 58 (04) (1998, in press).Google Scholar
32.Colomban, Ph., Adv. Ceram. 21, 139 (1987).Google Scholar
33.Colomban, Ph. and Lapous, N., Comp. Sci. Technol. 56, 739 (1996).Google Scholar
34.Karlin, S. and Colomban, Ph., **Composites, Part B, 29B, 41 (1998).CrossRefGoogle Scholar
35.Colomban, Ph., in Proc. 4th Int. Symp. on High-Temperature Corrosion and Protection of Materials, edited by Streiff, R., Stringer, J., Krutenat, R. C., Caillet, M., and Rapp, R. A., May 20–24, 1996, Les Embiez (Trans. Tech. Publ., Zurich, 1997); Mater. Sci. Forum 251–254 (1997), p. 833 (part 2).Google Scholar