Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T23:57:32.114Z Has data issue: false hasContentIssue false

Spontaneous atomic ordering and magnetism in epitaxially stabilized double perovskites

Published online by Cambridge University Press:  23 January 2013

Akira Ohtomo*
Affiliation:
Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8552, Japan; Tokodai Institute of Element Strategy (TIES) and Materials Research Center for Element Strategy (MCES), Tokyo Institute of Technology, Yokohama 226-8503, Japan; and ALCA, Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan
Suvankar Chakraverty
Affiliation:
Correlated Electron Research Group (CERG) and Cross-Correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako 351-0198, Japan
Hisanori Mashiko
Affiliation:
Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8552, Japan
Takayoshi Oshima
Affiliation:
Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8552, Japan
Masashi Kawasaki
Affiliation:
Correlated Electron Research Group (CERG) and Cross-Correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako 351-0198, Japan; and Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
*
a)Address all correspondence to this author. e-mail: aohtomo@apc.titech.ac.jp
Get access

Abstract

We have studied the atomic ordering of B-site transition metals and magnetic properties in the pulsed laser deposited films of La2CrFeO6 (LCFO) and La2VMnO6 (LVMO), whose bulk materials are known to be single perovskites with random distribution of the B-site cations. Despite similar ionic characters of constituent transition metals in each compound, the maximum B-site order attained was surprisingly high, ∼90% for LCFO and ∼80% for LVMO, suggesting a significant role of epitaxial stabilization in the spontaneous ordering process. Magnetization and valence state characterizations revealed that the magnetic ground state of both compounds was coincidently ferrimagnetic with saturation magnetization of ∼2 μB per formula unit, unlike those predicted theoretically. In addition, they were found to be insulating with optical band gaps of 1.6 and 0.9 eV for LCFO and LVMO, respectively. Our results present a wide opportunity to explore novel magnetic properties of binary transition metal perovskites upon epitaxial stabilization of the ordered phase.

Type
Invited Feature Review
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

1. Pickett, W.E. and Moodera, J.S.: Half metallic magnets. Phys. Today 54(5), 39 (2001).CrossRefGoogle Scholar
Anderson, M.T., Greenwood, K.B., Taylor, G.A., and Poeppelmeier, K.R.: B-cation arrangements in double perovskites. Prog. Solid State Chem. 22, 197 (1993).CrossRefGoogle Scholar
Kobayashi, K-I., Kimura, T., Sawada, H., Terakura, K., and Tokura, Y.: Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677 (1998).CrossRefGoogle Scholar
Kobayashi, K-I., Kimura, T., Tomioka, Y., Sawada, H., Terakura, K., and Tokura, Y.: Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskite Sr2FeReO6 . Phys. Rev. B 59, 11159 (1999).CrossRefGoogle Scholar
Kim, T.H., Uehara, M., Cheong, S-W., and Lee, S.: Large room-temperature intergrain magnetoresistance in double perovskite SrFe1-x (Mo or Re) x O3 . Appl. Phys. Lett. 74, 1737 (1999).CrossRefGoogle Scholar
Kato, H., Okuda, T., Okimoto, Y., Tomioka, Y., Takenoya, Y., Ohkubo, A., Kawasaki, M., and Tokura, Y.: Metallic ordered double-perovskite Sr2CrReO6 with maximal Curie temperature of 635 K. Appl. Phys. Lett. 81, 328 (2002).CrossRefGoogle Scholar
Blasse, G.: Ferromagnetic interaction in non-metallic perovskites. J. Phys. Chem. Solids 26, 1969 (1965).CrossRefGoogle Scholar
Ueda, K., Muraoka, Y., Tabata, H., and Kawai, T.: Atomic ordering in the LaFe0.5Mn0.5O3 solid solution film. Appl. Phys. Lett. 78, 512 (2001).CrossRefGoogle Scholar
Pickett, W.E.: Spin-density-functional-based search for half-metallic antiferromagnets. Phys. Rev. B 57, 10613 (1998).CrossRefGoogle Scholar
Kanamori, J.: Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87 (1959).CrossRefGoogle Scholar
Goodenough, J.B.: Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3 . Phys. Rev. 100, 564 (1955).CrossRefGoogle Scholar
Ueda, K., Tabata, H., and Kawai, T.: Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science 280, 1064 (1998).CrossRefGoogle ScholarPubMed
Pickett, W.E., Meijer, G.I., Ueda, K., Tabata, H., and Kawai, T.: Ferromagnetic superlattices. Science 281, 1571a (1998).CrossRefGoogle Scholar
Miura, K. and Terakura, K.: Electronic and magnetic properties of La2FeCrO6: Superexchange interaction for a d 5-d 3 system. Phys. Rev. B 63, 104402 (2001).CrossRefGoogle Scholar
Gray, B., Lee, H.N., Liu, J., Chakhalian, J., and Freeland, J.W.: Local electronic and magnetic studies of an artificial La2FeCrO6 double perovskite. Appl. Phys. Lett. 97, 013105 (2010).CrossRefGoogle Scholar
van Leuken, H. and de Groot, R.A.: Half-metallic antiferromagnets. Phys. Rev. Lett. 74, 1171 (1995).CrossRefGoogle ScholarPubMed
Androulakis, J., Katsarakis, N., and Giapintzakis, J.: Realization of La2MnVO6: Search for half-metallic antiferromagnetism? Solid State Commun. 124, 77 (2002).CrossRefGoogle Scholar
Chakraverty, S., Ohtomo, A., and Kawasaki, M. (unpublished).Google Scholar
Manako, T., Izumi, M., Konishi, Y., Kobayashi, K-I., Kawasaki, M., and Tokura, Y.: Epitaxial thin films of ordered double perovskite Sr2FeMoO6 . Appl. Phys. Lett. 74, 2215 (1999).CrossRefGoogle Scholar
Chakraverty, S., Ohtomo, A., Okuyama, D., Saito, M., Okude, M., Kumai, R., Arima, T., Tokura, Y., Tsukimoto, S., Ikuhara, Y., and Kawasaki, M.: Ferrimagnetism and spontaneous ordering of transition metals in double perovskite La2CrFeO6 films. Phys. Rev. B 84, 064436 (2011).CrossRefGoogle Scholar
Chakraverty, S., Yoshimatsu, K., Kozuka, Y., Kumigashira, H., Oshima, M., Makino, T., Ohtomo, A., and Kawasaki, M.: Magnetic and electronic properties of ordered double-perovskite La2VMnO6 thin films. Phys. Rev. B 84, 132411 (2011).CrossRefGoogle Scholar
Chakraverty, S., Ohtomo, A., Okude, M., Ueno, K., and Kawasaki, M.: Epitaxial structure of (001)- and (111)-oriented perovskite ferrate films grown by pulsed-laser deposition. Cryst. Growth Des. 10(4), 1725 (2010).CrossRefGoogle ScholarPubMed
Mashiko, H., Oshima, T., and Ohtomo, A.: Band-gap narrowing in α-(Cr x Fe1-x )2O3 solid-solution films. Appl. Phys. Lett. 99, 241904 (2011).CrossRefGoogle Scholar
Gorbenko, O.Y., Samoilenkov, S.V., Graboy, I.E., and Kaul, A.R.: Epitaxial stabilization of oxides in thin films. Chem. Mater. 14(10), 4026 (2002).CrossRefGoogle Scholar
Imada, M., Fujimori, A., and Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).CrossRefGoogle Scholar
Serrate, D., De Teresa, J.M., and Ibarra, M.R.: Double perovskites with ferromagnetism above room temperature. J. Phys. Condens. Matter 19, 023201 (2007).CrossRefGoogle Scholar
Arima, T., Tokura, Y., and Torrance, J.B.: Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B 48, 17006 (1993).CrossRefGoogle ScholarPubMed
Nabi, H.S. and Pentcheva, R.: Energetic stability and magnetic coupling in (Cr1-x Fe x )2O3: Evidence for a ferrimagnetic ilmenite-type superlattice from first principles. Phys. Rev. B 83, 214424 (2011).CrossRefGoogle Scholar