Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T17:10:57.477Z Has data issue: false hasContentIssue false

Stability and formation of NiAl3 under ion irradiation

Published online by Cambridge University Press:  31 January 2011

M. Nastasi
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
H.H. Johnson
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
J.W. Mayer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
J.M. Williams
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
Get access

Abstract

Compound samples of NiAl3 as well as Ni23Al77 multilayered samples have been irradiated by either Xe or Ne ions to doses of 2 × 1015 Xe ions/cm2 and 1.3 × 106 Ne ions/cm2 at temperatures of 100 K, 300 K, and 373 K. In the case of compound irradiation, NiAl3 stability appears to be determined by regrowth kinetics and increased with lighter irradiating ion mass and higher irradiation temperature. The formation of NiAl3 by ion mixing Ni/Al multilayers was not affected by irradiating ion mass and appears to be limited by nucleation.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Liu, B-X., Johnson, W. L., and Nicolet, M-A., Appl. Phys. Lett. 42, 45 (1983).Google Scholar
2Brimhall, J. L., Kissinger, H. E., and Chariot, L. A., Radiat. Eff. 77, 237 (1983).CrossRefGoogle Scholar
3Hung, L. S., Nastasi, M., Gyulai, J., and Mayer, J. W., Appl. Phys. Lett. 42, 672 (1983).CrossRefGoogle Scholar
4Cheng, Y-T., Johnson, W. L., and Nicolet, M-A., SPIE 530, 134 (1985).Google Scholar
5Goltz, G., Fernandez, R., and Nicolet, M-A., in The Materials Research Society Proceedings, edited by Picraux, S. T. and Choyke, W. J. (North-Holland, New York, 1982), Vol. 7, p. 227.Google Scholar
6Baglin, J. E. E. and d'Heurle, F. M., in Ion Beam Surface Layer Analysis, edited by Meyer, O., Linke, G., and Kappeler, F. (Plenum, New York, 1976), Vol. 1, p. 385.CrossRefGoogle Scholar
7Nastasi, M., Hung, L. S., and Mayer, J. W., Appl. Phys. Lett. 43, 831 (1983).CrossRefGoogle Scholar
8Colgan, E., Nastasi, M., and Mayer, J. W., J. Appl. Phys. (to be published).Google Scholar
9Manning, I. and Mueller, G. P., Comput. Phys. Commun. 1, 85 (1974).Google Scholar
10Manning, I. and Mueller, G. P., Nucl. Eng. Des. 33, 78 (1975).CrossRefGoogle Scholar
11Robinson, M. T. and Oen, O. S., J. Nucl. Mater. 110, 147 (1982).CrossRefGoogle Scholar
12Guinan, M. W. and Kinney, J. H., J. Nucl. Mater. 103-104, 1319 (1981).Google Scholar
13Castlman, L. S. and Seigle, L. L., TMS-AIME 212, 589 (1958).Google Scholar
14Russell, K. C., Adv. Colloid Interface Sci. 13, 205 (1980).CrossRefGoogle Scholar
15Zies, G., Sitzungsber. Akad. Wiss. DDR. 17N, 44 (1978).Google Scholar
16Jenkins, M. L. and Wilkens, M., Phil. Mag. 34, 1155 (1976).Google Scholar
17Feder, J., Russell, K. C., Lothe, J., and Pound, G. M., Adv. Phys. 15, 111 (1966).CrossRefGoogle Scholar
18Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry (Pergamon, New York, 1979), 5th ed.Google Scholar
19Kaufman, L. and Nesor, H., Metall. Trans. 5, 1623 (1974).Google Scholar