Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T03:37:59.575Z Has data issue: false hasContentIssue false

Stability of ZrTiCuNiBe Bulk Metallic Glass upon Isothermal Annealing Near the Glass Transition Temperature

Published online by Cambridge University Press:  31 January 2011

Wei Hua Wang*
Affiliation:
Institute of Physics & Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People 's Republic of China and National Microgravity Laboratory of Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Ru Ju Wang
Affiliation:
Institute of Physics & Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
W. T. Yang
Affiliation:
Institute of Physics & Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
B. C. Wei
Affiliation:
National Microgravity Laboratory of Chinese Academy of Sciences, Beijing 10080, People's Republic of China
P. Wen
Affiliation:
Institute of Physics & Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
D. Q. Zhao
Affiliation:
Institute of Physics & Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
M. X. Pan
Affiliation:
Institute of Physics & Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
*
a)Address all correspondence to this author. e-mail: whw@aphy.iphy.ac.cn
Get access

Abstract

The stability of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) upon isothermal annealing near the glass transition temperature has been investigated by using x-ray diffraction, differential scanning calorimetry, and the pulse echo overlap method. The density, elastic constants, and thermodynamic parameters as well as their annealing time dependence have been determined. The microstructural and properties changes of the annealed BMG were checked by acoustic measurement. Obvious structural and property changes were observed with prolonged annealing of the BMG near the glass transition temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Klement, W., Willens, R., and Duwez, P., Nature 187, 869 (1960).CrossRefGoogle Scholar
2.Inoue, A., Mater. Trans. JIM 36, 866 (1995).CrossRefGoogle Scholar
3.Johnson, W.L., Mater. Science Forum 225–227, 35 (1996).CrossRefGoogle Scholar
4.Wang, W.H., Bai, H.Y., Luo, J.L., Wang, R.J., and Duo, J., Phys. Rev. B 62, 25 (2000).CrossRefGoogle Scholar
5.Wang, W.H., Wang, R.J., Li, F.Y., and Pan, M.X., Appl. Phys. Lett. 74, 1803 (1999).CrossRefGoogle Scholar
6.Schreiber, D., Elastic Constants and Their Measurement (McGraw-Hill, New York, 1973).Google Scholar
7.Wang, W.H. and Bai, H.Y., J. Appl. Phys. 84, 5961 (1998).CrossRefGoogle Scholar
8. L.A. Girifalco, Statistical Physical of Materials (Wiley, New York, 1973), p. 78.Google Scholar
9.Schneider, S., Thiyagarajan, P., and Johnson, W.L., Appl. Phys. Lett. 68, 493 (1996).CrossRefGoogle Scholar
10.Wang, W.H., Wei, Q., and Friedrich, S., Phys. Rev. B 57, 8211 (1998).CrossRefGoogle Scholar
11.Liu, J.M., Macht, M.H., and Wiedemann, A., Mater. Sci. Eng. A 222, 182 (1997).CrossRefGoogle Scholar
12.Zhuang, Y.X., Wang, W.H., Pan, M.X., and Zhao, D.Q., Appl. Phys. Lett. 75, 2392 (1999).CrossRefGoogle Scholar
13.Wang, W.H., Zhuang, Y.X., Pan, M.X., and Yao, Y.S., J. Appl. Phys. 88, 3914 (2000).CrossRefGoogle Scholar
14.Conner, R.D., Dandliker, R.B., and Johnson, W.L., Acta Mater. 46, 6089 (1998).CrossRefGoogle Scholar
15.Busch, R., Schneider, S., Peker, A., and Johnson, W.L., Appl. Phys. Lett. 67, 1544 (1995).CrossRefGoogle Scholar
16.Wang, W.H., Wang, R.J., Pan, M.X., and Yao, Y.S., Phys. Rev. B 62, 11292 (2000).CrossRefGoogle Scholar
17.Bothe, K. and Neuhaeuser, H., Scr. Metall. 16, 1053 (1982).CrossRefGoogle Scholar
18.Primak, W., Phys. Rev. 100, 1677 (1955).CrossRefGoogle Scholar
19.Gibbs, M.R.J., Evetts, J.E., and Leake, J.A., J. Mater. Sci. 18, 278 (1983).CrossRefGoogle Scholar
20.Khonik, V.A., Phys. Status Solidi A 177, 173 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
21.Samwer, K., Busch, R., and Johnson, W.L., Phys. Rev. Lett. 2, 580 (1999).CrossRefGoogle Scholar
22.Bakke, E., Busch, R., and Johnson, W.L., Appl. Phys. Lett. 67, 3260 (1995).CrossRefGoogle Scholar
23.Busch, R., Liu, W., and Johnson, W.L., J. Appl. Phys. 83, 4134 (1998).CrossRefGoogle Scholar