Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T20:05:17.195Z Has data issue: false hasContentIssue false

Strain Determination Around Vickers Indentation on Silicon Surface by Raman Spectroscopy

Published online by Cambridge University Press:  03 March 2011

Pascal Puech*
Affiliation:
Laboratoire de Physique des Solides de Toulouse - IRSAMC, UMR5477 Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
François Demangeot
Affiliation:
Laboratoire de Physique des Solides de Toulouse - IRSAMC, UMR5477 Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
Paulo Sergio Pizani
Affiliation:
Departamento de Fisica, Universidade Federal de São Carlos, C.P.676, 13560-970 São Carlos, SP, Brazil
*
a)Address all correspondence to this author. e-mail: pascal.puech@lpst.ups-tlse.fr
Get access

Abstract

We used Raman spectroscopy to characterize indentations on silicon. We focused our attention on the strain field around several indentations made on an (001) oriented silicon wafer with loads ranging from 100 mN to 10 N. Micro-Raman spectroscopy was used for the analysis of the indentation strain field. By multiplying the frequency shift of the optical phonon of silicon by the distance from the center of the fingerprint to the point under investigation, we were able to determine the strained zone extension accurately with the boundary between the strained area and the unperturbed area, which becomes clearly visible. This method allowed us to propose an equation valid over a large range of loads (0.1–10 N), which allowed us to estimate the size of the strained zone. We show that even in the absence of visible defects, the strain field extended to a region relatively far from the imprint in between cracks. The analysis of the radial and lateral cracks gives information where the proposed equations are valid.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tabor, D.: The Hardness of Metals (Oxford University Press, Oxford, U.K., 1951)Google Scholar
2Matzke, H.: Indentation Fracture and Mechanical Properties of Ceramic Fuels and Glasses (Taylor & Francis, London, U.K., 1987)Google Scholar
3Gogotsi, Y., Domnich, V., Dub, S., Kailer, A. and Nickel, K.: Cyclic nanoindentation and Raman microspectroscopy study of phase transformations in semiconductors. J. Mater. Res. 15, 871 (2000).CrossRefGoogle Scholar
4Pirouz, P., Chaim, R., Dahmen, U. and Westmacott, K.H.: The martensitic transformation in silicon. I. Experimental observations. Acta Metall. Mater. 38, 313 (1991).CrossRefGoogle Scholar
5Mytton, R.J.: Comparative review of silicon and thin film solar cells for space applications. Phys. Technol. 4, 92 (1973).CrossRefGoogle Scholar
6Goetzberger, A., Knobloch, J. and Voss, B.: Crystalline Silicon Solar Cells: Technology and Systems Applications (J. Wiley & Sons, New York, 1998)Google Scholar
7 Silicon Based Materials and Devices, edited by Nalwa, H.S. (Academic Press, New York, 2001)Google Scholar
8Van Vliet, K.J., Li, J., Zhu, T., Yip, S. and Suresh, S.: Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B67, 104 (2003).Google Scholar
9Bachlechner, M.E., Omeltchenko, A., Nakano, A., Kalia, R.K., Vashishta, P., Ebbsjö, I., Madhukar, A. and Messina, P.: Multi-million-atom molecular dynamics simulation of atomic level stresses in Si (111)/Si3N4 (001) nanopixels. Appl. Phys. Lett. 72, 1969 (1998).CrossRefGoogle Scholar
10De Wolf, I.: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139 (1996).CrossRefGoogle Scholar
11Pelletier, M.J. in Analytical Application of Raman Spectroscopy, edited by Pelletier, M.J. (Blackwell Science, Oxford, U.K., 1999), p. 53Google Scholar
12Domnich, V. and Gogotsi, Y.: Phase transformations in silicon under contact loading. Rev. Adv. Mater. Sci. 3, 1 (2002).Google Scholar
13Olijnyk, H. and Jephcoat, A.P.: Effect of pressure on Raman spectra of metastable phases of Si and Ge. Phys. Status. Solidi. 211, 413 (1999).3.0.CO;2-B>CrossRefGoogle Scholar
14Tanikella, B.N., Somasekhar, A.H., Sowers, A.T., Nemanich, R.J. and Scattergood, R.O.: Phase transformations during microcutting tests on silicon. Appl. Phys. Lett. 69, 2870 (1996).CrossRefGoogle Scholar
15Domnich, V. and Gogotsi, Y. in Frontiers of High-Pressure Research II: Application of High Pressure to Low Dimensional Novel Electronic Materials, edited by Hochheimer, H.D., Kuchta, B., Dorhout, P.K., and Yarger, J.L. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001), p. 291CrossRefGoogle Scholar
16Lucazeau, G. and Abello, L.: Micro-Raman analysis of residual stresses and phase transformations in crystalline silicon under microindentation. J. Mater. Res. 12, 2262 (1997).CrossRefGoogle Scholar
17Puech, P., Pinel, S., Jasinevicius, R.G. and Pizani, P.S.: Mapping of the 3D-strain field around a micro-indentation on silicon using polishing and Raman spectroscopy. J. Appl. Phys. 88, 4582 (2000).CrossRefGoogle Scholar
18Cook, R.F. and Pharr, G.M.: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787 (1990).CrossRefGoogle Scholar
19Bowden, M. and Gardiner, D.J.: Stress and structural images of microindented silicon by Raman microscopy. Appl. Spectrosc. 51, 1405 (1997).CrossRefGoogle Scholar
20Cook, R.F., Liniger, E. and Pascucci, M.R.: Indentation fracture of polycrystalline cubic materials. J. Hard Mater. 5, 191 (1994).Google Scholar
21Kruzic, J.J. and Richie, R.O.: Determining the toughness of ceramics from Vickers indentations using the crack-opening displacements: An experimental study. J. Am. Ceram. Soc. 86, 1433 (2003).CrossRefGoogle Scholar
22Ericson, F., Johansson, S. and Schweitz, J-A.: Hardness and fracture toughness of semiconducting materials studied by indentation and erosion techniques. Mater. Sci. Eng. A105, 131 (1988).CrossRefGoogle Scholar
23Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
24Venugolan, S. and Ramdas, A.K.: Effect of uniaxial stress on the Raman spectra of cubic crystals CaF2, BaF2, and Bi12GeO20. Phys. Rev. B8, 717 (1973).CrossRefGoogle Scholar
25Aspnes, D.E. and Studna, A.A.: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B27, 985 (1982).Google Scholar