Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T04:26:35.095Z Has data issue: false hasContentIssue false

Structural and electrical properties of AlxIn1-xN (0.10≤x≤0.94) films grown on sapphire substrates

Published online by Cambridge University Press:  31 January 2011

Wang-Zhou Shi
Affiliation:
Key Laboratory of Optoelectronics Materials and Devices, Shanghai Normal University, Shanghai, People's Republic of China 200234
Get access

Abstract

AlxIn1–xN films were grown on (0001) sapphire substrates by reactive radiofrequency (RF) magnetron sputtering in an ambient of Ar and N2. The XRD patterns are shown from AlxIn1–xN films grown on AlN/sapphire substrates using a wide range of magnetron power ratio settings. The wurtzite structure films have high crystal quality with full-width at half-maximum (FWHM) in the range of 0.22°–0.52°. The surface morphologies were observed by scanning electron microscopy (SEM). Raman spectra were measured on the AlxIn1–xN surfaces in a backscattering configuration at room temperature with 532 nm laser excitation and show A1(LO) bimodal behavior. Electrical resistivity and electron mobility were measured by the Hall effect method in the conventional Van der Pauw geometry at room temperature. The lowest electrical resistivity is 1 × 10−3 Ω·cm. This work suggests that reactive magnetron sputtering is a promising method for growing AlxIn1–xN films in over a large composition range.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hums, C., Bläsing, J., Dadgar, A., Diez, A., Hempel, T., Christen, J., Krost, A., Lorenz, K., Alves, E.Metal organic vapor phase epitaxy and properties of AlInN in the whole compositional range. Appl. Phys. Lett. 90, 022105 (2007)Google Scholar
2.Bounab, S., Charifia, Z., Bouarissaa, N.Electronic and positronic properties of Al1−xInxN with zincblende structure. Physica B 324, 72 (2002)Google Scholar
3.Guo, Q.X., Ding, J., Tanaka, T., Nishio, M., Ogawa, H.X-ray absorption near-edge fine structure study of AlInN semiconductors. Appl. Phys. Lett. 86, 111911 (2005)Google Scholar
4.Yamaguchi, S., Izaki, R., Kaiwa, N., Sugimura, S., Yamamoto, A.Thermoelectric devices using InN and Al1−xInxN thin films prepared by reactive radio-frequency sputtering. Appl. Phys. Lett. 84, 5344 (2004)Google Scholar
5.Pietzka, C., Denisenko, A., Alomari, M., Medjdoub, F., Carlin, J.F., Feltin, E., Grandjean, N., Kohn, E.Effect of anodic oxidation on the characteristics of lattice-matched AlInN/GaN heterostructures. J. Electron. Mater. 37, 616 (2008)Google Scholar
6.Xie, J.Q., Ni, X.F., Wu, M., Leach, J.H., Özgür, Ü., Morkoç, H.High electron mobility in nearly lattice-matched AlInN/AlN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 91, 132116 (2007)CrossRefGoogle Scholar
7.Wang, K., Martin, R.W., Amabile, D., Edwards, P.R., Hernandez, S., Nogales, E., O'Donnell, K.P., Lorenz, K., Alves, E., Matias, V., Vantomme, A., Wolverson, D., Watson, I.M.Optical energies of AlInN epilayers. J. Appl. Phys. 103, 073510 (2008)CrossRefGoogle Scholar
8.Gonschorek, M., Carlin, J.F., Feltin, E., Py, M.A., Grandjean, N., Darakchieva, V., Monemar, B., Lorenz, M., Ramm, G.Two-dimensional electron gas density in Al1−xInxN/AlN/GaN heterostructures (0.03 < x < 0.23). J. Appl. Phys. 103, 093714 (2008)Google Scholar
9.Seppänen, T., Hultman, L., Birch, J., Beckers, M., Kreissig, U.Deviations from Vegard's rule in Al1−xInxN (0001) alloy thin films grown by magnetron sputter epitaxy. J. Appl. Phys. 101, 043519 (2007)Google Scholar
10.Gadanecz, A., Bläsing, J., Dadgar, A., Hums, C., Krost, A.Thermal stability of metal organic vapor phase epitaxy grown AlInN. Appl. Phys. Lett. 90, 221906 (2007)Google Scholar
11.Dadgar, A., Schulze, F., Bläsing, J., Diez, A., Krost, A., Neuburger, M., Kohn, E., Daumiller, I., Kunze, M.High sheet charge-carrier density AlInN/GaN field effect transistors on Si (111). Appl. Phys. Lett. 85, 5400 (2004)Google Scholar
12.Butte, R., Carlin, J.F., Feltin, E., Gonschorek, M., Nicolay, S., Christmann, G., Simeonov, D., Castiglia, A., Dorsaz, J., Buehlmann, H.J.Current status of AlInN layers lattice-matched to GaN for photonics and electronics. J. Phys. D: Appl. Phys. 40, 6328 (2007)Google Scholar
13.Onuma, T., Chichibu, S.F., Uchinuma, Y., Sota, T., Yamaguchi, S., Kamiyama, S., Amano, H., Akasaki, I.Recombination dynamics of localized excitons in Al1–xInxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy. J. Appl. Phys. 94, 2449 (2003)Google Scholar
14.Cheng, A.T., Su, Y.K., Lai, W.C., Chen, Y.Z., Kuo, S.Y.Characterization of Mg-doped AlInN annealed in nitrogen and oxygen ambients. J. Electron. Mater. 37, 1070 (2008)Google Scholar
15.Lorenz, K., Franco, N., Alves, E., Watson, I.M., Martin, R.W., O'Donnell, K.P.Anomalous ion channeling in AlInN/GaN bilayers: Determination of the strain states. Phys. Rev. Lett. 97, 085501 (2006)Google Scholar
16.Guo, Q.X., Okazaki, Y., Kume, Y., Tanaka, T., Nishio, M., Ogawa, H.Reactive sputter deposition of AlInN thin films. J. Cryst. Growth 300, 151 (2007)Google Scholar
17.Yeh, T-S., Wu, J-M., Lan, W-H.The effect of AlN buffer layer on properties of AlxIn1−xN films on glass substrates. Thin Solid Films 517, 3204 (2009)CrossRefGoogle Scholar
18.Seppänen, T., Persson, P.O.Å., Hultman, L., Birch, J., Radnóczi, G.Z.Magnetron sputter epitaxy of wurtzite Al1−xInxN (0.1 < x < 0.9) by dual reactive DC magnetron sputter deposition. J. Appl. Phys. 97, 083503 (2005)CrossRefGoogle Scholar
19.Hemmingsson, C., Boota, M., Rahmatalla, R.O., Junaid, M., Pozina, G., Birch, J., Monemar, B.Growth and characterization of thick GaN layers grown by halide vapor phase epitaxy on lattice-matched AlInN templates. J. Cryst. Growth 311, 292 (2009)Google Scholar
20.Naik, V.M., Weber, W.H., Uy, D., Haddad, D., Naik, R., Danylyuk, Y.V., Lukitsch, M.J., Auner, G.W., Rimai, L.Ultraviolet and visible resonance-enhanced Raman scattering in epitaxial Al1–xInxN thin films. Appl. Phys. Lett. 79, 2019 (2001)Google Scholar
21.Naik, V., Naik, R., Somashekarappa, H., Mahesh, S.S., Somashekar, R.Variation of crystallite size of Al1–xInxN for different values of x and band gap. Bull. Mater. Sci. 29, 29 (2006)Google Scholar
22.Liou, B.T., Yen, S.H., Kuo, Y.K.Vegard's law deviation in band gap and bowing parameter of AlxIn1–xN. Appl. Phys. A 81, 651 (2005)Google Scholar
23.Liu, Q.L., Bandob, Y., Hu, J.Q.Controlled growth of nanostructured III-nitride films via a reactive magnetron sputtering method. J. Cryst. Growth 306, 288 (2007)Google Scholar
24.Kang, T-T., Yamamoto, M., Tanaka, M., Hashimoto, A., Yamamoto, A.Effect of gas flow on the growth of In-rich AlInN films by metal-organic chemical vapor deposition. J. Appl. Phys. 106, 053525 (2009)CrossRefGoogle Scholar
25.Kang, T-T., Hashimoto, A., Yamamoto, A.Raman scattering of indium-rich AlxIn1−xN: Unexpected two-mode behavior of A1(LO). Phys. Rev. B: Condens. Matter 79, 033301 (2009)Google Scholar
26.Abernathy, C.R., MacKenzie, J.D., Bharatan, S.R., Jones, K.S., Pearton, S.J.Growth of InxGa1–xN and InxAl1–xN on GaAs metalorganic molecular beam epitaxy. J. Vac. Sci. Technol., A 13, 716 (1995)Google Scholar
27.Yeh, T.S., Wu, J.M., Lan, W.H.Electrical properties and optical band gaps of AlInN films by reactive sputtering. J. Cryst. Growth 310, 5308 (2008)Google Scholar