Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T03:59:42.885Z Has data issue: false hasContentIssue false

Superplastic behavior of a kappa carbide material (Fe3AlCx)

Published online by Cambridge University Press:  31 January 2011

Woo-Jin Kim
Affiliation:
Department of Metallurgy and Materials Science, Hong-Ik University, 72–1 Sangsu-Dong, Mapo-Ku, Seoul, 121–791, Korea
Oscar A. Ruano
Affiliation:
Department of Physical Metallurgy, CENIM, C.S.I.C., Av. Gregorio del Amo 8, 28040 Madrid, Spain
Jeffrey Wolfenstine
Affiliation:
Department of Chemical and Biochemical Engineering, University of California, Irvine, California 92717
Georg Frommeyer
Affiliation:
Max Planck Institut für Eisenforschung, GmbH, Max Planck Strasse 1, D-40237, Germany
Oleg D. Sherby
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Get access

Abstract

Fine-grained kappa carbide (Fe3AlCx) materials, containing 12.5 and 14% Al, and 3.5% C, were prepared by powder processing and hipping procedures. The creep behavior of the kappa materials was shown to be identical to that observed in superplastic iron carbide, and was shown to follow a grain boundary–diffusioncontrolled grain boundary sliding relation. The tensile fracture strains in kappa, however, were shown to be considerably less than in iron carbide with a maximum elongation of 92% noted. This difference is attributed to either a low stress intensity factor or to contamination of the powder surface in the kappa material. The compression creep strength, at a given strain rate, was shown to be about two times higher than the tension creep strength.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Minemura, T., Kitamura, A., and Masumoto, T., Metall. Trans. 12A, 1041 (1981).CrossRefGoogle Scholar
2.Phase Diagrams of Ternary Iron Alloys, edited by V., Raghavan (ASM, Metals Park, OH, 1987), Part I, p. 99.Google Scholar
3.Fukuyo, H., Tsai, H. C., Oyama, T., and Sherby, O. D., ISIJ Int. 31, 76 (1991).Google Scholar
4.Wittenauer, J., Schepp, P., and Walser, B., in Superplasticity and Superplastic Forming, edited by Hamilton, C. H., and Paton, N. E. (TMS, Warrendale, PA, 1988), p. 507.Google Scholar
5.Teo, C. K., Ruano, O. A., Wadsworth, J., and Sherby, O. D., J. Mater. Sci. 29, 6581 (1994).Google Scholar
6.Kim, W. J., Wolfenstine, J., Ruano, O. A., Frommeyer, G., and Sherby, O. D., Metall. Trans. 23A, 527 (1992).CrossRefGoogle Scholar
7.Sherby, O. D., and Wadsworth, J., Prog. Mater. Sci. 33, 169 (1989).CrossRefGoogle Scholar
8.Ruano, O. A., and Sherby, O. D., Revue Phys. Appl. 23, 625 (1988).CrossRefGoogle Scholar
9.Sherby, O. D., and Burke, P. M., Prog. Mater. Sci. 13, 325 (1967).Google Scholar
10.Ruano, O. A., and Sherby, O. D., Mater. Sci. Eng. 64, 61 (1984).CrossRefGoogle Scholar
11.Köster, W., Z. Metallk. 39, 1 (1948).Google Scholar
12.Coble, R. L., J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
13.Pendelgast, I. D., Budworth, D. W., and Brett, N. H., Trans. Brit. Ceram. Soc. 71, 319 (1971).Google Scholar
14.Ruano, O. A., Wolfenstine, J., Wadsworth, J., and Sherby, O. D., Acta Metall. Mater. 39, 661 (1991).CrossRefGoogle Scholar
15.Walser, B., and Sherby, O. D., Metall. Trans. 10A, 1461 (1979).CrossRefGoogle Scholar
16.Kim, W. J., Wolfenstine, J., and Sherby, O. D., Acta Metall. Mater. 39, 199 (1991).Google Scholar
17.Kim, W. J., Wolfenstine, J., and Sherby, O. D., J. Ceram. Soc. Jpn. 102, 835 (1994).Google Scholar