Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T04:42:03.641Z Has data issue: false hasContentIssue false

Superplastic forming of an α-phase rich silicon nitride

Published online by Cambridge University Press:  31 January 2011

Tanguy Rouxel
Affiliation:
Laboratoire de Matériaux Céramiques et Traitements de Surface, URA-CNRS 320, 47 av. A Thomas, 87065 Limoges Cedex, France
Fabrice Rossignol
Affiliation:
Laboratoire de Matériaux Céramiques et Traitements de Surface, URA-CNRS 320, 47 av. A Thomas, 87065 Limoges Cedex, France
Jean-Louis Besson
Affiliation:
Laboratoire de Matériaux Céramiques et Traitements de Surface, URA-CNRS 320, 47 av. A Thomas, 87065 Limoges Cedex, France
Paul Goursat
Affiliation:
Laboratoire de Matériaux Céramiques et Traitements de Surface, URA-CNRS 320, 47 av. A Thomas, 87065 Limoges Cedex, France
Get access

Abstract

The deformation behavior of fine-grained, α-phase rich silicon nitride materials has been studied between 1823 and 1923 K, both in compression and in tension. It is first shown that the higher the α-phase content, the better the superplastic forming ability. A large tension-compression flow asymmetry was evidenced. For instance, shear-thickening flow shows up in compression whereas shear-thinning is observed in tension. Furthermore, much higher flow stresses and hardening rates are reported in compression than in tension. Elongations of more than 80% were achieved for strain rates between 2.5 and 5 × 10−5 s−1. In the light of our results and of the abundant literature dealing with the high temperature deformation in silicon nitride, a sketch of the different deformation stages is proposed, which emphasizes the tension-compression asymmetry. Starting from the promising results obtained at the laboratory scale, the feasibility for net-shaping of a real part was demonstrated by hot-forging of a parabolic shell.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rouxel, T., Rossignol, F., Besson, J. L., Goursat, P., Goujaud, J. F., and Lespade, P., in Plastic Deformation of Ceramics, edited by Routbort, J., Bradt, R. C., and Brookes, C. (Plenum, New York and London, 1995), pp. 351358.CrossRefGoogle Scholar
2.Rossignol, F., Rouxel, T., Besson, J. L., Goursat, P., and Lespade, P., J. Phys. III 5, 127 (1995).Google Scholar
3.Rossignol, F., Goursat, P., Besson, J. L., and Lespade, P., J. Europ. Ceram. Soc. 13, 299 (1994).CrossRefGoogle Scholar
4.Hampshire, S., Drew, R. A. L., and Jack, K. H., J. Am. Ceram. Soc. 66, C46 (1984).Google Scholar
5.Rouxel, T., Huger, M., and Besson, J. L., J. Mater. Sci. 27, 279 (1992); T. Rouxel, J. L. Besson, C. Gault, P. Goursat, M. Leigh, and S. Hampshire, J. Mater. Sci. Lett. 8, 1158–1160 (1989).CrossRefGoogle Scholar
6.Gault, C., in Nondestructive Monitoring or Materials Properties, edited by Holbrook, J. and Bussière, J. (Mater. Res. Soc. Symp. Proc. 142, Pittsburgh, PA, 1989), p. 263.Google Scholar
7.Evans, A. G. and Charles, E. A., J. Am. Ceram. Soc. 59, 371 (1976).Google Scholar
8.Marchand, R., Laurent, Y., Lang, J., and Bihan, M. Th. Le, Acta Crystallogr. B25, 2157 (1969).CrossRefGoogle Scholar
9.Grün, R., Acta Crystallogr. B35, 800 (1979).Google Scholar
10.Butler, E., Philos. Mag. 8th series 24, 829 (1971).CrossRefGoogle Scholar
11.Greskovitch, C. and Gazza, G. E., J. Mater. Sci. Lett. 4, 195 (1985).Google Scholar
12.Suematsu, H., Petrović, J. J., and Mitchell, T. E., in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by Chen, I-W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 449.Google Scholar
13.Lemercier, H., Rouxel, T., Fargeot, D., Besson, J. L., and Piriou, B., J. Non-Cryst. Solids 201, 128 (1996).Google Scholar
14.Rouxel, T., Lemercier, H., and Besson, J. L., in Tailoring of Mechanical Properties of Si3N4 Ceramics, edited by Hoffmann, M. J. and Petzow, G. (Kluwer Acad. Pub., The Netherlands, 1994), pp. 175186.CrossRefGoogle Scholar
15.Hampshire, S., Nestor, E., Flynn, R., Besson, J. L., Rouxel, T., Lemercier, H., Goursat, P., Sebai, M., Thompson, D. P., and Liddell, K., J. Europ. Ceram. Soc. 14, 261 (1994).Google Scholar
16.Wu, X. and Chen, I. W., J. Am. Ceram. Soc. 75, 2733 (1992).Google Scholar
17.Wakai, F., Kodama, Y., Sakaguchi, S., Murayama, N., Izaki, K., and Niihara, K., Lett. to Nature 344, 421 (1990); T. Rouxel, F. Wakai, and K. Izaki, J. Am. Ceram. Soc. 75, 2363 (1992).CrossRefGoogle Scholar
18. 3-D graphite-Aérospatiale, BP 11, 33165 Saint-Médard en Jalles Cedex, France.Google Scholar
19.Lange, F. F., J. Am. Ceram. Soc. 62, 428 (1979).CrossRefGoogle Scholar
20.Tsuge, A., Inoue, H., and Komeya, K., J. Am. Ceram. Soc. 72, 2014 (1989).CrossRefGoogle Scholar
21.Mécanique des matériaux solides, edited by Lemaître, J. and Chaboche, J. L. (Dunod, Bordas Paris Pub., 1988), Chap. 7.Google Scholar
22.Fate, W. A., J. Appl. Phys. 46, 2375 (1975).Google Scholar
23.Wiederhorn, S. M., Luecke, W. E., Hockey, B. J., and Long, G. G., Tailoring of Mechanical Properties of Si3N4 Ceramics, edited by Hoffmann, M. J. and Petzow, G. (Kluwer Acad. Pub., The Netherlands, 1994), pp. 305326.CrossRefGoogle Scholar
24.Kossowsky, R. A. M., Miller, D. G. and Diaz, E. S., J. Mater. Sci. 10, 983 (1975).CrossRefGoogle Scholar
25.Besson, J. L., Maine, M., Bahloul-Hourlier, D., and Goursat, P., unpublished results.Google Scholar
26.Crampon, J., Duclos, R., and Rakotoharisoa, N., J. Mater. Sci. 28, 909 (1993).Google Scholar
27.Gasdaska, C. J., J. Am. Ceram. Soc. 77, 2408 (1994).CrossRefGoogle Scholar
28.Ohji, T. and Yamauchi, Y., J. Am. Ceram. Soc. 76, 3105 (1993).Google Scholar
29.Birch, J. M. and Wilshire, B., J. Mater. Sci. 13, 2627 (1978).CrossRefGoogle Scholar
30.Wiederhorn, S. M., Hockey, B. J., Cranmer, D. C., and Yeckley, R., J. Mater. Sci. 28, 445 (1993).CrossRefGoogle Scholar
31.Backhaus-Ricoult, M. B., Eveno, P., and Castaing, J., Plastic Deformation of Ceramics, edited by Routbort, J., Bradt, R. C., and Brookes, C. (Engin. Foundation Conf., Snowbird, UT, Aug. 7–12, 1994).Google Scholar
32.Chen, I. W. and Hwang, S. L., J. Am. Ceram. Soc. 75, 1073 (1992).Google Scholar
33.Burger, P., Doctorate Thesis, University of Lille, France (Dec. 1994).Google Scholar
34.Arons, R. M. and Tien, J. K., J. Mater. Sci. 15, 2046 (1980).Google Scholar
35.Luecke, W. E. and Wiederhorn, S. M., Key Engin. Mat. 89–91, 587 (Trans. Tech. Publ., Switzerland, 1994).Google Scholar
36.Lange, F. F., Davis, B. T., and Clarke, D. R., Part 1, J. Mater. Sci. 15, 601 (1980).CrossRefGoogle Scholar
37.Dryden, J. R., Kucerovsky, D., Wilkinson, D. S., and Watt, D. F., Acta Metall. et Mater. 37, 2007 (1989).CrossRefGoogle Scholar
38.Chadwick, M. M., Wilkinson, D. S., and Dryden, J. R., J. Am. Ceram. Soc. 75, 2327 (1992).CrossRefGoogle Scholar
39.Yoon, C. K. and Chen, I. W., J. Am. Ceram. Soc. 73, 1555 (1990).Google Scholar
40.Duva, J. M., J. Eng. Mater. Technol. 106, 317 (1984).CrossRefGoogle Scholar
41.Rouxel, T. and Verdier, P., Acta Mater. 44, 2217 (1996).Google Scholar
42.Li, J. H. and Uhlman, D. R., Part 1, J. Non-Cryst. Solids 3, 127 (1970).Google Scholar
43.Travers, T., Bideau, D., Gervois, A., Troadec, J. P., and Messager, J. C., J. Phys. A 19L, 1033 (1986).Google Scholar
44.Zelin, M. G., Krasilnikov, N. A., Valiev, R. Z., Grabski, M. W., Yang, H. S., and Mukherjee, A. K., Acta Metall. et Mater. 42, 119 (1994).Google Scholar
45.Langdon, T. G., Mater. Sci. Eng. A174, 225 (1994).CrossRefGoogle Scholar
46.Besson, J. L., Streicher, E., Chartier, T., and Goursat, P., J. Mater. Sci. Lett. 5, 803 (1986).Google Scholar